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“The worth of idea is based on how effective it is in explaining and 

predicting natural phenomena” – The Philosophy of Instrumentalism 
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1 Motivation 

1.1 The Complexity of Urban Problems 

Navigating the complex web of challenges in modern cities, from pollution and pandemics to 

intricate transportation and infrastructure issues, demands a nuanced understanding of their 

interconnected nature (UN-Habitat, 2022). In aspiring to transform cities into inclusive, safe, 

resilient, and sustainable entities (United Nations, 2015), we confront the reality that cities 

function as complex adaptive systems (CAS), akin to living organisms (Dawson, 2011). 

Achieving these transformative goals requires profound comprehension of urban behaviour 

under planned interventions such as policy implementation or infrastructure provision, and 

unexpected perturbations such as extreme weather or infrastructure failure (CDBB, 2022b).  

It is necessary to accurately model the city as a complex adaptive system of systems 

(CASoS) to achieve this (Shi et al., 2021a). Here, the term ‘model’ refers to a mathematical 

and/or conceptual representation of a system of ideas, events, or processes used for 

predicting phenomena. CASoS encompass various complex adaptive systems (CAS) that 

exhibit adaptive, evolving, and interdependent characteristics (Baldwin et al., 2011). 

Intervening effectively in a CASoS (city or urban region) involves first identifying a problem 

(such as high levels of crime) and then generating possible solutions (such as employing 

more police officers), using a model to estimate the solution's effectiveness. The difficulty lies 

in the fact that problems in a CASoS are inherently challenging to define (Rittel and Webber, 

1973), making questions such as ‘why are some cities not safe?’ very difficult to answer. This 

complexity is compounded by the interconnected nature of CASoS, where addressing one 

aspect can unpredictably influence others. 

The characteristics of cities (as CASoS) pose significant computational modelling challenges 

across the spatial and temporal dimensions (Shi et al., 2021b). Events and impacts range 

from localised short-term effects such as the impact of flooding on daily commutes (Barr et 

al., 2020b), to global long-term behavioural change such as the post-pandemic shift in travel 

demand and mode choice (Batty, 2022). Both mitigation of and adaption to these events 

often entail intricate trade-offs, for example, protecting cities against extreme weather events 

whilst minimising resource consumption and emissions. Addressing one objective can 

sometimes negatively impact another (Caparros-Midwood et al., 2019). Many urban 

problems are multi-objective, multi-dimensional and spatiotemporally diverse, often 

described as wicked problems (Goodspeed, 2015). 

Wicked problems, such as climate change, social injustice, and healthcare, are defined by 

their social complexity and lack of a determinable endpoint (Tonkinwise, 2015). 
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Understanding a wicked problem is difficult because it doesn't stay the same; it evolves and 

shifts, often in response to any attempts to understand it. Similarly, each step taken to solve 

a wicked problem, can change the problem. There are no definitive rules to tell when a 

solution to such a problem is complete, nor any ways to test it off-line (Knapp, 2015). This 

does not mean that we cannot try to make positive interventions for wicked problems (Rittel 

and Webber, 1973). Instead, it means that to create predictive models that are 

computationally realistic, the goal of intervention must shift from ‘solve’ to ‘improve’. The 

wickedness of a problem is not about a higher degree of complexity, but about a 

fundamentally different kind of challenge to the design process, making solution secondary, 

and problem understanding central (Basadur et al., 2007). 

To comprehend the responses of urban systems to change, and thoroughly understand the 

problem that we are trying to improve, it becomes imperative to incorporate into our models 

the most unpredictable element of cities – human behaviour (Batty, 2018). State of the art 

approaches to urban modelling focus on the concept of a ‘digital twin’, a digital replica of 

physical assets and processes. Digital twins offer a cost-effective way to trial solutions in a 

virtual environment before implementing them, addressing the dynamic and interconnected 

nature of urban problems (Birks et al., 2020; Grieves, 2022). These digital test runs of 

interventions in complex systems are essential in urban decision making due to the one-shot 

nature of wicked problems – once an intervention is made, the initial problem changes. 

However, in reality, most ‘digital twins’ are built for asset-level interventions (like building 

construction and maintenance), acting in isolation, and neglecting broader systemic 

implications arising from interactions between irrational agents (Boje et al., 2020). These 

asset-level digital twins need to be connected to one another and integrated with models of 

complex city systems, including comprehensive representation and treatment of population 

characteristics and demography, mobility, economic activity, and environmental 

sustainability. This integration is vital to enable highly effective decision-making for wicked 

problems (CDBB, 2022b).  

Assimilating current data into CASoS models is critical to predict future states with accuracy 

(Lewis et al., 2006; Alizadeh et al., 2020). Consider weather forecasting: its effectiveness is 

limited if based solely on a complex systems model calibrated with historical data, as such 

models tend to diverge from reality over time. The model's usefulness arises from its ability 

to assimilate the latest data and update its predictions accordingly. The process of data 

assimilation is illustrated in Figure 1.  Data assimilation acts as a crucial bridge, continuously 

merging new observations with existing models to enhance the reliability and precision of 

future predictions. This dynamic updating ensures that the model remains closely aligned 

with real-world changes, maintaining its relevance and accuracy over time. 
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This research project aims to extend the concept of data assimilation to urban CASoS. While 

complex systems models for CASoS have been developed, effectively integrating real-time 

data into these models – akin to the processes employed in weather forecasting – continues 

to present a significant challenge (Monti et al., 2023; Asher et al., 2023). Applying the 

principles of data assimilation to urban CASoS models, is a critical step toward developing 

accurate and responsive urban digital twins, ensuring that these sophisticated models reflect 

the dynamic nature of urban systems. 

 

Figure 1 Data Assimilation Framework 

1.2 Connected Digital Twins 

Two essential characteristic of digital twins is that they can keep ultra-high synchronicity and 

fidelity with the physical space through metrology (measurements)—this process is shown in 

Figure 2 (Van der Valk et al., 2020). Data assimilation is one method which can be used to 

achieve this. Synchronicity here implies at least a unidirectional real-time data link between 

the physical system to the model, and fidelity implies a model that contains sufficient 

information to be considered a faithful replica of the physical system (Jones et al., 2020; Van 

der Valk et al., 2020).  These characteristics have demonstrated immense value in product 

lifecycle management (PLM) (Lim et al., 2020) and increasingly, in building information 

modelling (BIM) (Boje et al., 2020).  
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Figure 2 Physical/digital twinning cycle - based on Jones et al. (2020) 

 

However, in both PLM and BIM, creating a digital twin typically involves models of 

complicated systems at the asset level—for example, the HVAC, power, water, structural and 

data systems for an office building modelled and optimised in real-time would be classified 

as a digital twin of a complicated system of systems (Baldwin et al., 2011). However, a 

complex system is defined as one where understanding the overall behaviour necessitates 

knowledge of the individual actors and their interactions within the system (Baldwin et al., 

2011).  

The integration of existing digital twins poses significant challenges, particularly when 

interfacing asset-level digital twins with synchronous models that represent complex human 

behaviours (Ivanov et al., 2020; Digital Twin Hub, 2022; CDBB, 2022a). Initiatives such as 

the UK's Data and Analytics Facility for National Infrastructure (DAFNI), the Australian Urban 

Research Infrastructure Network (AURIN), and the UK Centre for Digital Built Britain (CDBB) 

are crucial in providing frameworks to ensure that new digital twins are complementary to 

existing ones through standardisation of common practices such as data management 

(CDBB, 2020; DAFNI, 2023). Creating and implementing data standards is currently a critical 

roadblock in creating a connected system of digital twins (Digital Twin Hub, 2022). The 

complexity of building connected digital twins, considering the variety of stakeholders, goals, 
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and the intricate nature of cities, is exponentially harder than that of BIM and PLM (Digital 

Twin Hub, 2022; Lei et al., 2023; Ivanov et al., 2020).  

The development of a city-scale connected digital twin requires a decentralised and 

evolutionary approach, underpinned by collaborative efforts, since no single entity can 

manage such a vast undertaking independently (Diakite et al., 2022). Following this 

decentralised approach to development, the technological infrastructure of a city-scale digital 

twin can be split into two primary functions: digital twins for situational awareness (DTfSA), 

and digital twins for strategic decision-making (DTfSDM). The Gemini Principles (developed 

by the CDBB) separate these functions as follows (Bolton et al., 2018):  

• DTfSA - “A dynamic model of an asset, with input of current performance data from 

the physical twin via live data flows from sensors which feedback into the physical 

twin via real-time control”. 

• DTfSDM – “A static strategic planning model of a system, with input of long-term 

condition data from the physical twin via corporate systems which feedback into the 

physical twin via the capital investment process”.  

Critically, while these functions can be separated, a DTfSA can mature into a DTfSDM 

through re-analysis of the streamed data at a later date. The DTfSA during its lifetime can 

provide crucial partly simulated, partly observed data for the entire urban system through its 

coupling of real-time data input with complex modelling output. This allows strategic 

decision-making twins to utilise the significant volume of detailed historic data collected by 

DTfSA’s.  

The key difference between the function of a DTfSA and a DTfSDM lies in the use of real-

time data. A DTfSA necessitates an accurate, current representation of the system, along 

with short-term predictions about its immediate future state, underscoring the critical role of 

real-time data. Barr et al. (2020a) for example, highlights how real-time data facilitates 

adaptive decision-making, while Shi et al. (2021a) discuss the impact of real-time data on 

predictive accuracy in complex systems. The city (considered as a CASoS) can be broken 

down into many systems (CAS) that exhibit unique behaviours and characteristics. 

Examples include economic and ecological systems, the spread of diseases, land-use 

planning, housing markets, voting behaviours, supply chain management, population 

dynamics, cultural evolution, the impact of climate change, public transportation, traffic flow, 

and healthcare systems. These are all systems renowned for their predictive challenges due 

to their inherent complexity. DTfSA can significantly enhance city planning and management 

services through greater understanding of behaviours in much the same way that the 
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weather forecast allows for preparation against unexpected weather events (Hu et al., 2021; 

Wang et al., 2022). DTfSA could enable: 

• Immediate response to anomalies (for instance, rapidly addressing traffic accidents 

and public transport delays). 

• Dynamic adaptation (such as adaptive traffic control systems dynamically adjusting 

signal timings to optimise flow and minimise congestion). 

• Reduced downtime and losses (for instance, promptly identifying and addressing 

issues in infrastructure, such as faults in metro lines). 

• Optimisation of resources (for example, intelligent lighting systems that modulate 

brightness according to real-time ambient light levels and the presence of 

pedestrians or vehicles, enhancing energy efficiency and resource utilisation). 

• Improved decision-making (for example, during natural disasters or accidents, real-

time data providing detailed information on the location and severity of incidents 

enables emergency responders to swiftly and effectively deploy resources where 

needed). 

• Customer satisfaction (for instance, providing public transport users with real-time 

updates on bus and train arrivals, enhancing the commuting experience).  

The applications for real-time digital twins of complex systems are many and varied (CDBB, 

2022b; Diakite et al., 2022). One of the major challenges is in understanding what types of 

models can/should be coupled with real-time data streams to facilitate the predictive element 

of situational awareness. Situational awareness, defined by Endsley (1995) as the 

perception, understanding, and future projection of environmental elements, is crucial in 

dynamic decision-making. Systems characterised by decentralised interactions, diversity 

among entities, and emergent behaviour (like the systems mentioned above) not only fall 

into the CAS category but are also exceptionally well-suited for analysis through agent-

based models (ABMs) (Epstein, 1999; Macal and North, 2009; Heard et al., 2015; Railsback 

and Grimm, 2019).  

1.3 Situational Awareness Digital Twin for Complex Systems 

ABMs excel where multiple factors interact in intricate ways, leading to outcomes that are 

not straightforward to predict — often involving multi-scale feedback loops, non-linear 

relationships, and dependencies that can lead to emergent behaviours (Epstein, 1999). For 

example, traffic patterns in a city are influenced by road layouts, traffic signals, driver 

behaviour, public transportation systems, weather, school holidays, and a multitude of other 

factors. These factors lead to emergent behaviour such as traffic congestion; and affect 

travel times and accident rates in complex ways (Batty, 2013).  
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Whilst ABMs are incredibly effective at modelling these complex interactions, they do so 

offline, and the output of the ABM is typically very difficult to validate (Heppenstall et al., 

2021). Challenges in real-time prediction and computational overhead in ABMs necessitate 

the development of efficient surrogate models (also referred to as emulators or meta 

models), that provide a computationally less intensive alternative to ABMs (Heppenstall and 

Malleson, 2020; Heppenstall et al., 2021). While ABMs offer detailed insights into urban 

dynamics through their ‘bottom-up’ simulation approach, they face limitations in real-time 

processing and computational efficiency (Zhang, Li and Zhang, 2020). The technical 

challenge of creating a situational awareness digital twin in urban environments bears 

resemblance to the difficulty of weather forecasting using a sparse network of sensors 

(Zheng et al., 2014; Batty, 2018). Mobility networks for example, are influenced by a range of 

human and environmental factors, from the weather to public holidays, to the latent effects of 

the covid pandemic on behaviour patterns. The variety of different factors makes the task of 

attaining high-resolution, short-term information and prediction for decision-making 

particularly difficult (Xu et al., 2023).  

While ABMs excel at simulating intricate interactions, integrating these models with real-time 

data remains largely uncharted (Epstein, 1999; Gilbert, 2019; Heppenstall and Malleson, 

2020). Fundamentally, ABMs cannot take a series of inputs and make a prediction — their 

analytical power comes from creating agents – either by explicitly programming their 

behaviour or for more advanced models using machine learning to generate agent 

behaviours (Brearcliffe and Crooks, 2021) – and running the model to see how complex 

behaviour emerges as a result of the agents’ interactions with their environment. Under 

existing modelling paradigms and available computational frameworks, a direct coupling 

between real-time and ABMs is not operationally feasible. However, taking inputs and 

creating predictions, is where machine learning methods excel. Innovative approaches like 

the application of machine learning to real-time data for creating ABM surrogates are 

emerging as a result (Kieu et al., 2022). These surrogate models, simplified representations 

of more complex ABMs, can use data generated from a limited number of ABM simulations 

to predict system states, thus offering a solution to the validation challenges of ABMs, and 

the need for timely near real-time predictions for improved situational awareness (Heard et 

al., 2015).  

An example is Melbourne’s Activity and Agent Based Model which offers a comprehensive 

model of the cities mobility system (Infrastructure Victoria, 2021). Outputs of the ABM can be 

extracted at certain points, such as the number of pedestrians crossing a particular street. 

The ABM is used to generate a comprehensive dataset under a number of different initial 

conditions, through a number of simulations. The results of the simulation are extracted at 
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certain points of the model, yielding time-series at these locations. The surrogate is then 

trained on this set of spatially distributed time-series data and learns the spatiotemporal 

patterns in the data. The trained model is then fed real data, for example data extracted from 

CCTV footage about the actual number of pedestrians at a location and makes a prediction 

about the number pedestrians at another nearby sensor. As the surrogate has been trained 

on the outputs of the ABM, the spatiotemporal dependencies should be captured in the 

surrogate, and the surrogate should be able to rapidly produce a prediction based on ABM 

states that are most similar to the real data input. The potential of surrogates in simulating 

complex urban systems in this way is significant, yet their application in large models using 

real data is still in its infancy (Malleson et al., 2019; Ten Broeke et al., 2021; Tang and 

Malleson, 2022; Ternes et al., 2022). 

Many deep-learning architectures, for example, Graph Neural Networks (GNNs) — which 

are well-suited for handling the inherent spatiotemporal data dependencies of urban 

dynamics — have shown promise in recent research into surrogates (Gilmer et al., 2017; 

Jiang and Luo, 2022). For the first time to knowledge, this study aims to bring real-time data 

from a comprehensive urban sensor network together with appropriate modelling 

approaches (for example a hybrid deep-learning ABM surrogate) to make reliable, 

consistent, and scalable near real-time predictions of situational awareness.  

2 Aim and Research Questions 

2.1 Aim 

Aim: To develop an AI system for the prediction of spatiotemporal dynamics in 

the built environment using near real-time geospatial IoT sensor data. 

It is critical that computationally efficient models are developed to address the need for 

effective monitoring of complex systems. Enabling this technology unlocks significant 

economic and social value through faster identification of anomalous events (e.g. 

overcrowding of public spaces), more efficient use of resources (e.g. energy usage), and 

improved decision making (e.g. emergency response). Developing DTfSA will help cities to 

become more resilient to the impacts of climate change such as flooding by enabling faster 

response and intervention; safer through monitoring of threats such as overcrowding and 

spread of disease; more inclusive through the creation of open platforms that allow citizens 

to better understand the problems that exist in cities; and sustainable through more efficient 

resource allocation and eventually through enabling more effective strategic decision-making 

for meeting commitments such as net zero.  

Three research questions have been identified to achieve this aim.  
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2.2 Research Questions 

RQ1:  What is the utility and suitability of IoT sensors to capture the complex spatial and 

temporal dynamics of the urban environment in near real-time? 

Understanding the data that is available through exploratory analysis is a critical first step in 

developing DTfSA. Utility and suitability here refer to the effectiveness and appropriateness 

of the data respectively – both conditions need to be met to enable DTfSA. Effective data 

allows for a model to function correctly, and appropriate data allow for the outputs of a model 

to be explained.  

RQ2: Can machine-learning methods be used to develop predictive models of complex 

urban dynamics using near real-time sensor data? 

Measuring the effectiveness of machine-learning methods for predicting urban dynamics 

using historic sensor data is necessary to establish whether the data sources are effectively 

capturing the spatiotemporal patterns that exist in complex systems. This is critical - if the 

spatial distribution and temporal acquisition (data coverage) is inadequate then the surrogate 

is likely to make inaccurate predictions. 

RQ3: How can ABMs and the predictive outputs from research question 2 be combined 

within a data assimilation framework for improved understanding of urban dynamics? 

Enhancing the predictive capabilities of machine-learning models using the rich outputs of 

ABMs is the final goal of this research. This is based on the success of data-assimilation 

frameworks in creating real-time models of complex systems in other fields like meteorology, 

and the burgeoning field of research into creating surrogates of agent-based models. 

3 Objectives and Methods 

The four research objectives presented in this section, in addition to comprising the main 

chapters in the PhD thesis, are each intended to form a scientific publication.  

3.1 Objective 1 

To assess the quality of near real-time sensor data. 

3.1.1 Overview 

Central to the construction of predictive models is the comprehension of the data's quality — 

its suitability and utility — in predicting specific behaviours. This objective aims to devise 

methodologies for evaluating the quality of IoT data by employing various quality metrics. 

The research will build on the results of the MRes project and will entail the adaptation of an 
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established data quality (DQ) taxonomy, applying it to IoT data streams from select pilot 

projects.  

The relevance of both data utility and suitability varies according to the application domain. 

Data utility encompasses the overall effectiveness of the data, encapsulating attributes such 

as accuracy, completeness, and timeliness (Liu et al., 2020; Fizza et al., 2022; Mansouri et 

al., 2023). Conversely, data suitability pertains to the data’s compatibility with a specific 

purpose. This includes considerations like format and structural alignment with particular 

analytical tools or methodologies (what level of data preprocessing is necessary), as well as 

the data’s contextual appropriateness, such as its congruence with the spatial and temporal 

aspects of the study (is the data from a similar enough time period, location, and culture to 

where it is being applied). 

The investigation will encompass a series of case studies to evaluate the performance of the 

IoT data in these varied scenarios. For instance, one case study might involve the utilisation 

of pedestrian sensors to gauge overcrowding in a railway station. The research will explore 

multiple facets of DQ to ascertain the feasibility of making confident predictions about 

whether overcrowding thresholds are being exceeded. Key considerations include factors 

such as the station's maximum capacity and the reliability of the sensor data.  

Another case study may focus on examining the suitability of data for augmenting existing 

anomaly detection methods in pedestrian or traffic contexts. This aspect of the research will 

critically assess the contextual relevance of the data, particularly its efficacy in developing 

models capable of detecting anomalies in diverse locations and times. Such an approach 

underscores the importance of not only the data’s intrinsic qualities but also its adaptability to 

various situational demands, thereby offering valuable insights into its broader applicability. 

3.1.2 Proposed Methods 

Existing frameworks, such as those developed by Liu et al. (2020) or Mansouri et al. (2023),  

provide a robust structure for systematically evaluating each DQ aspect in the context of 

real-time data streams. Liu et al. (2020) identify definitions for six DQ dimensions based on 

existing literature. These are accuracy, timeliness, completeness, data volume, utility, and 

concordance. The authors also note the importance of future research into developing 

guidelines or checklists for DQ in IoT systems. Mansouri et al. (2023) identify twenty-five DQ 

dimensions, and ten metrics to measure DQ issues (such as redundancy, uncertainty, and 

ambiguity), that could serve as a checklist for DQ from IoT data sources.  

A series of application case studies, such as the use of pedestrian sensors in railway 

stations, and anomaly detection in pedestrian or vehicle data, will serve as practical contexts 
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for applying these dimensions and metrics to assess DQ. Data collection will be conducted 

using a combination of automated data extraction tools (for computing metrics such as 

completeness) and manual assessments (for properties of the sensors such as object 

detection accuracy calculated by the manufacturers).  

DQ metrics, such as those developed by Fizza et al. (2022), will be utilised to measure the 

confidence in data based on its timeliness, particularly in applications requiring high 

situational awareness. Fizza et al. (2022) propose a model to compute age of IoT data that 

can be used by IoT application to cope with uncertainty in the data during the decision-

making/actuation process. Data completeness will be measured in a similar fashion, 

following methods such as those presented by Ehrlinger and Wöß (2022) who calculate 

weighted or unweighted metrics for measuring the breadth, depth, and scope of information 

contained in the data completeness analogously to the accuracy metric on different 

aggregation levels with a weighted arithmetic mean. Confidence in accuracy — the degree 

to which observations of objects truly reflect their real-world situation — will need to be 

collected manually through engagement with manufacturers and operators of the IoT 

sensors.  

The effect of DQ metrics like accuracy, timeliness, and completeness on predictions will be 

assessed through comparative model evaluation, using metrics such as root mean squared 

error (RMSE) and R squared. Popular models for making timeseries predictions, include 

statistical and numerical methods such as seasonal autoregressive integrated moving 

average (SARIMA) and optimised dynamic mode decomposition (ODMD); and neural 

network approaches such as transformers and long short-term memory units (LSTMs) will be 

investigated (Kutz et al., 2016; Du et al., 2020; Peppa et al., 2021; Kieu et al., 2022). A 

combination of these models will be used in this investigation following a detailed review of 

literature. 

3.1.3 Deliverables 

• Greater understanding of the DQ issues present in real-time IoT data.  

• A new software library for the continuous monitoring of sensor data quality. 

3.2 Objective 2 

Assess the spatiotemporal dependency of near real-time sensor data.  

3.2.1 Overview 

This objective focuses on examining the spatiotemporal dependencies within IoT data 

streams from a network of sensors — this is critical for understanding whether sensor 

coverage is adequate which in turn depends on the DQ measures investigated in the 
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previous objective. High spatiotemporal dependency would suggest adequate coverage, 

whereas an absence of dependency suggests additional systems are influencing behaviour 

that are not being measured, indicating additional sensors or additional data sources may be 

needed. This research will explore artificial intelligence methods for analysing spatially and 

temporally variable data, particularly in areas where continuous spatiotemporal fields are 

measured at irregular points in space, using sparse sensor networks like pedestrian or traffic 

CCTV cameras. By extending this investigation to non-Euclidian spatiotemporal fields such 

as pedestrian or vehicle networks, the study aims to deepen the understanding of spatial 

and temporal relationships in complex urban systems. 

3.2.2 Proposed Methods 

The methodology first involves an exploratory analysis to understand the expected lag in 

data patterns, such as estimating the walking, cycling, or driving time between sensors. The 

next step will be to train a preliminary deep learning model (e.g., a graph neural network) 

and assess its ability to make spatiotemporal predictions. The model will use sensor data 

that has been split into training/testing/validation subsets and evaluated using standard 

performance metrics. 

An example case study might be a network of streets equipped with pedestrian sensors in 

the city centre. The role of exploratory analysis will be in analysing the similarity in data 

counts and the movement patterns they imply. The primary challenge anticipated is the 

limited spatial distribution, reliability, and availability of sensors. This initial research will be 

followed by an investigation of literature around preprocessing, to generate encodings that 

may help to improve the model performance, for example decomposing temporal signals 

from each IoT source using techniques like principal component analysis, Fourier analysis 

(Amato et al., 2020), or optimised dynamic model decomposition are both approaches that 

could be investigated for this purpose (Kutz et al., 2016). 

To assess the similarity of spatial and temporal components, the study will use statistical 

methods such as spatial autocorrelation (Amato et al., 2020) and dynamic time-warping 

(Froese et al., 2020), alongside deep-learning approaches such as hybrid graph neural 

networks. Given the non-Euclidean nature of pedestrian networks, conventional deep 

learning approaches such as convolutional neural networks (CNNs) may not be suitable 

(Klemmer et al., 2019). Instead, graph-neural networks and generative adversarial networks 

(GANs) with local autocorrelation, as indicated by recent research (Klemmer et al., 2019; 

Jiang and Luo, 2022), will be explored. 

3.2.3 Deliverables 

• Greater understanding around the spatiotemporal dependency of IoT sensors.  
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• A series of notebooks containing the modelling and analysis results for a limited case 

study. 

• A library of helper functions for manipulating spatiotemporal IoT data to use in future 

objectives.  

3.3 Objective 3 

Assimilate outputs of agent-based models with real-time sensor data in order to monitor 

urban systems in real-time. 

3.3.1 Overview 

This objective seeks to develop a surrogate model for simulating complex interactions in 

urban environments. The aim is to enable real-time processing of complex data through 

assimilation of ABM outputs with real-time data from IoT sensors. The surrogate model is 

essentially a computationally efficient stand-in (often referred to as a surrogate, emulator, or 

meta-model) for the ABM that enables rapid processing of data. This builds on existing work 

in this field (Lamperti et al., 2018; Kieu et al., 2022; Zhang et al., 2020) where surrogate 

methods are tested with success on synthetic data. This objective will involve stakeholder 

collaboration with industry or government bodies to pre-emptively ensure the research adds 

practical value, and to facilitate the transition from theory to real-world application. 

Statistical and machine learning models, although effective in predicting aggregate 

outcomes like footfall counts, often fall short in delivering deeper insights such as pedestrian 

density or delays that ABMs can provide (Kieu et al., 2022). Moreover, the data-intensive 

nature of these simpler models pose a challenge, as they require extensive datasets to 

achieve versatility (Monti et al., 2023). In many cases, certain system states might remain 

unobserved, limiting the ability of these models to make accurate predictions for scenarios 

not represented in the training data. This highlights the need for a more advanced approach 

that combines the comprehensive analytical power of ABMs with the efficiency of machine 

learning (Heppenstall et al., 2021). 

A machine-learning framework will be established that can effectively mimic the behaviour of 

ABMs by learning from their spatiotemporally rich outputs. These surrogates, effectively 

functioning as a computational bridge or assimilation filter, will translate the comprehensive 

data from ABMs into actionable insights with reduced processing time. The focus will be on 

creating a mapping between real-time aggregated IoT data and the outputs of ABMs, thus 

enabling more efficient and accurate simulations of urban dynamics (Kieu et al., 2022). 
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3.3.2 Proposed Methods 

The methodology involves a review of existing work in this area to identify potential 

enhancements of existing methods. The primary approach will be to train deep-learning 

models on the outputs of ABMs. The focus will be on developing models that can capture 

high-dimensional, nonlinear relationships inherent in urban dynamics. Various deep learning 

architectures will be explored for their suitability in approximating complex ABM outputs. This 

will follow on from the successful models identified in objective 2, like hybrid GNN-LSTM (Xu 

Zhang and Xia, 2022) and GANs with local autocorrelation (Amato et al., 2020).  

The performance of these surrogate models will be evaluated based on two components: 

firstly, their ability to replicate the behaviour observed in the ABM; and secondly, in their 

ability to make ‘real-time’ predictions of urban dynamics using historic IoT data as input. 

Figure 3 shows the overview of this process. The ABM is run offline to produce to a 

spatiotemporally rich training set (from a particular mobility type e.g., pedestrians), that is 

used to train the surrogate model. Sensors of a corresponding type to the training data 

produced by the ABM are then used to feed the deep learning surrogate with data upon 

which to make predictions. Continuing with the example of pedestrian sensors, the historic 

set of pedestrian data is used to evaluate the ability of the trained deep learning surrogate to 

make spatiotemporal predictions about pedestrians counts.  

The network of sensors will be subset into testing and validation sets. The surrogate will be 

fed the test subset to make spatiotemporal predictions about the system, for different time 

periods t. The accuracy and reliability of the surrogate will then be validated using metrics 

like RMSE, MAE, and R squared. If the surrogate can accurately predict the value at these 

sensors for given time t, then spatiotemporal predictions can be tested in real-time 

applications and model evaluation will begin. Evaluation will involve measuring predictive 

performance, computational efficiency, robustness against different types of data (data from 

other sensor types - for example cyclists or motor vehicles if only pedestrians have been 

used up until this point), and its generalisability (for example IoT sensor networks from other 

cities). The time-taken to make predictions is critical, the model will need to be able to make 

a prediction in a timeframe that is useful, which will fundamentally limit the size of the 

surrogate used. 
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Figure 3 Methodological Overview - Research Objective 3 

3.3.3 Deliverables 

• Greater understanding around using agent-based models to train surrogate models. 

• A surrogate model capable of real-time prediction with a demonstration for a 

particular case study.  

• A pilot module of code for implementing real-time spatiotemporal predictions on IoT 

sensors. 

3.4 Objective 4 

Evaluate the approach using real-world case-studies and develop a roadmap for scalable 

deployment. 

3.4.1 Overview 

The real-world case studies used in this objective will result from engagement with academic 

partners. Likely candidates include working with Newcastle City Council alongside a national 

data science institute such as DAFNI or the Alan Turing Institute (ATI). The aim would be to 
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use this technology to develop a critical piece of infrastructure such as emergency response 

capability. This research will include a 1-3 month placement in a city that has invested in IoT 

technology for recording urban dynamics, such as Singapore or Melbourne. The placement 

location would be used as another case study. Engagement with stakeholders will occur in 

the first month of this research project to identify the most critical use cases for this 

technology. This will include organising a 6-month internship at a partner institution such as 

DAFNI, ATI, or DSTL which could further inform the case studies investigated in this 

objective. 

 

Figure 4 Technology Readiness Level 

Technology readiness levels (TRL) shown in Figure 4 are a type of measurement system 

used to assess the maturity level of a particular technology (Manning, 2023). The final 

objective of this research seeks to look at how the outputs of previous objectives can be 

taken from pilot projects (at TRL 2 or 3) focusing on limited case-studies to a deployable 

piece of software that is fit for purpose (at TRL 5 or 6). 

This might involve working with councils for monitoring overcrowding during large events, or 

with transport agencies for signalling maintenance requirements or automating traffic light 

timings. This objective will focus on issues found during model evaluation, for example 

scalability—how effectively the pilot models function when increasing the spatial and 

temporal complexity of the modelled system—and generalisability of the research—the 

application of the research to other cities, or urban environments, with different levels of IoT 

sensor deployment.  
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Critically, this research involves further engagement with stakeholders, building on the 

relationships developed during objective 3. Collaboration with other researchers will allow 

the methods to be tested on different ABMs to understand the generalisability and scalability 

of the objective 3 surrogate. This objective will begin with a reflective process to understand 

the limitations in wider deployment through evaluating the method on other ABMs and 

subsequently developing a roadmap for delivering DTfSA. Institutions like the Alan Turing 

Institute, Digital Twin Hub, and DAFNI are leaders in this space would be most beneficial to 

engage with. This objective offers an opportunity to coauthor with other researchers that are 

developing technology in this space to raise awareness of the work carried out.  

3.4.2 Proposed Methods 

Demonstrating scalability and generalisability will involve using the surrogate architecture on 

similar ABMs. Do the methods continue to work when increasing the number of sensors? At 

what spatial/temporal resolutions do the methods breakdown? Does the model generalise to 

other case studies? These questions will be used to imagine how the research might look 

like as an infrastructure service and offer a guide for any future work in this area.  

Up until this point the surrogate will only have been tested on a single large ABM and a 

sensor network that corresponds to the ABMs purpose. Testing on similar ABMs, perhaps 

one that serves the same purpose but operates a different level of granularity, or is located in 

another city, is expected to highlight issues relating to generalisability and scalability. It is 

likely that accuracy will need to be sacrificed for computational efficiency for a more granular 

ABM that serves the same geographic area. Understanding where these trade-offs occur is 

critical for building a roadmap to DTfSA deployment. Developing this roadmap will involve 

the creation of a translation framework (identification of challenges such as ensuring the 

technology meets relevant industry standards and regulatory requirements; and identifying 

and mitigating risks associated with technology development etc.). The roadmap will include 

demonstrating how the surrogate integrates with existing digital infrastructure frameworks 

like DAFNI. It could also involve investigating methods for improving the computational run-

time of the code, for example a rewrite into a low-level programming language like C, as well 

as engaging with stakeholders such as local councils to reflect on the utility of the prototype. 

• An understanding of the limitations of real-time prediction in terms of utility and 

suitability of the developed methods for different data sources. 

• A pilot software library for deploying situational awareness capabilities to a network of 

spatiotemporally dependent urban IoT sensors.  

• A roadmap to higher technology readiness levels for the pilot software. 
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4 Novelty of the Proposed Research 

This research seeks to develop new methods in making near real-time predictions for 

complex urban systems such as movements within pedestrian or vehicle networks derived 

from a network of non-independent sensors. Whilst there is a large amount of research into 

using data to understanding urban mobility, there is very little that looks at the challenges of 

creating decision making platforms that utilise real-time data. There is very little existing 

literature that focusses on developing methods for measuring dependency between IoT 

sensors. This work intends to build on the work of centralised urban data repositories (like 

the Urban Observatories in the UK), by investigating how a network of sensors might be 

used to make real-time predictions about the states of complex urban systems. This is in 

order to develop our understanding of complex behaviour and causality in complex systems 

allowing us to more effectively define and test solutions for complex and wicked problems. 

The research aims to contribute the following to the field of complex systems modelling: 

• Greater understanding about the real dynamics of complex urban systems. 

• An enhanced understanding of causality in complex urban systems. 

And to deliver the following technical capabilities: 

• A demonstration of value for the data collected by centralised open urban 

repositories. 

• Pathways to making this data ‘AI ready’. 

• A demonstration of a real-time cloud-based web-app that provides useful information 

derived from the sensor data that can be used for improved decision making.  

• A package of code that conforms to best-practice and is built to be compatible with 

digital urban-twin frameworks such as DAFNI/Gemini.  

• A series of publications showcasing any scientific advancements made by this 

research.   
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