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ABSTRACT 

Urban observatories are emerging as data powerhouses in many UK cities, marking 

a transformative era in how we understand and manage urban life. These urban 

observatories are complex systems that continuously gather a vast array of data from air 

quality to traffic patterns. However, tapping into this treasure trove of data is not 

straightforward; it requires specialised skills and resources. Moreover, for this data to 

benefit the widest possible audience, it needs to be easily accessible and usable—even 

for those without expert knowledge. One key challenge is the accuracy of the collected 

data, often compromised by faulty sensors (James, Jonczyk et al. 2022). This dissertation 

explores how artificial intelligence can step in to automatically identify and label such 

erroneous data, making urban observatory datasets more reliable and user-friendly. 

This dissertation also provides an exploration of anomaly prediction within 

pedestrian data and its interplay with data quality's influence on model precision. An 

investigation covering 1,330 model states is undertaken. This includes 190 linear models 

and 1,140 LSTM models. Key findings and narratives from distinct test objectives have 

been derived. The implications of this research extend to large-scale urban data 

repositories, such as urban observatories, marking a significant stride toward harnessing 

the potential of data-driven situational awareness.  

The main findings of this study are: 

• Univariate models fall short in performance due to low data quality.  

• Integrating periodicity features reduces MAE in tests with incomplete data.  

• Multivariate models show a reduced MAE sensitivity to prediction horizon 

compared to univariate models.  

• Despite multivariate models achieving lower MAE, their anomaly detection 

isn't markedly better, potentially due to undertraining.  
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• Multivariate anomaly detection results suggest they might effectively avoid 

persistent false anomaly labelling post-normal behavior resumption. 

There is a significant amount of future work that needs to be done in order to fully 

understand the effect of data quality on anomaly detection, and recommendations for 

further work are discussed. 
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1 INTRODUCTION 

1.1 Motivation 

The modern urban environment, a dynamic and ever-evolving system, calls for 

enhanced situational awareness to aid effective decision-making. This dissertation 

focuses on how the quality of data obtained from IoT-enabled sensors influences our 

ability to monitor and predict urban pedestrian flows. By filling a critical gap in current 

research, this work seeks to improve our understanding of the behaviour and 

management of crowds in an urban context. 

Situational awareness, as defined by Endsley (1995), involves understanding and 

predicting the state of the environment through real-time data assimilation. This capability 

is vital for managing urban complexities and risks, as the effectiveness of interventions is 

intrinsically linked to understanding real-time situations. Supported by artificial intelligence 

(AI) and big data, data-driven decision-making has emerged as a critical tool for 

enhancing situational awareness in an urban context (MoD, 2022).  

One such application for situational awareness of pedestrian flows is the prediction 

of crowd formation. Crowd formation is difficult to predict beyond the short term due to the 

complexity of interactions that lead to the emergent crowding event. Predictive models 

that utilising real-time data are needed to solve this problem. The infrastructure for 

monitoring crowds in real-time is still in its infancy. Overcrowding events can have 

dramatic consequences, resulting in hundreds of injuries and fatalities each year (Sharma 

et al., 2023). As the world becomes more urbanised, and large-scale gatherings occur 

more frequently, monitoring pedestrian flows becomes increasingly important. IoT-enabled 

sensor networks offer enormous potential for the real-time monitoring of urban systems 

and potentially allow improved situational awareness of impending hazards and their 

impacts (Barr et al., 2020).   
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1.2 Background 

1.2.1 Urban Modelling 

The inception of urban modelling arose from the need to evaluate the impact of 

large-scale public investments on cities. Over the course of the 20th century, urban 

modelling has evolved significantly due to shifting paradigms. Driven by planning and 

policy requirements, and our increased understanding of human behaviour and the limits 

of computational reducibility, urban science has gradually transitioned from macro-statics 

(rooted in a mechanical worldview) to micro-dynamics (rooted in a complex systems 

worldview) (Wolfram, 2002, Batty, 2008). This shift in perspective to that of complex 

systems has introduced several new characteristics to urban modelling (Thurner et al., 

2018), including: 

• Nonlinearity: Slight changes can precipitate substantial effects, 

demonstrating that the relationship between cause and effect is not always 

proportional nor predictable. 

• Emergence: The behaviour of the entire system cannot be predicted merely 

by understanding its components. Novel properties and behaviours can 

"emerge" at the system level. 

• Adaptation: Complex systems have the capacity to learn from and adapt to 

their environment, making them dynamic and evolving rather than static. 

• Irreversibility: Processes often have a specific direction and are irreversible 

— an egg, once scrambled, cannot be unscrambled. 

• Uncertainty: It is impossible to predict the exact future state of a complex 

system; only probabilities of various outcomes can be determined. 

Simulation methods like agent-based modelling (ABM) coupled with large compute 

and storage capabilities make it possible to model systems at an extremely fine level of 

detail that can capture some complex phenomena (Heppenstall et al., 2011, Alvarez 

Castro and Ford, 2021). The COVID-19 pandemic prompted a surge in research aimed at 
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using ABMs to simulate interactions between individuals in cities (Hoertel et al., 2020, 

Cuevas, 2020, Silva et al., 2020, Hinch et al., 2021, Kerr et al., 2021, Alvarez Castro and 

Ford, 2021). Alvarez Castro and Ford (2021) for example, used an ABM to show 

quantitatively the effect of various mitigation strategies on COVID-19 transmission rates in 

university accommodation. Similarly, Cuevas (2020) used an ABM to simulate complex 

interactions between individuals to inform decision making for medical facilities.  

However, a method for evaluating the results of such models remains elusive and is 

still an active area of research (Heppenstall et al., 2016, Kieu et al., 2022). Evaluation and 

validation of ABMs is crucial because these models primarily rely on historical data (Xie et 

al., 2020, Bai et al., 2021, Heppenstall et al., 2021, Tang and Malleson, 2022). Because 

human behaviour evolves as a result of new technology, models that rely solely on 

historical data diverge from reality at a rate related to the length of time since the data was 

recorded (Batty et al., 2012, Shi et al., 2021). One major difficulty identified by Malleson et 

al. (2019) lies in the mapping of real observations on to an ABM state space. The author 

concludes that future experiments should explore the spatio-temporal resolution of the 

aggregate pedestrian data required. This should include the number, and characteristics, 

of the sensors that would need to be installed to accurately simulate the target system.  

Kieu et al, (2022) make progress in solving some of these issues using a time-series 

emulator for ‘real-time’ predictions on simulated data coupled with an ABM that models 

how pedestrians move through an environment. The authors acknowledge the lack of real 

data in evaluation, and that simulated data might not fully capture the dynamics of a target 

system compared to data derived from a real system.  

1.2.2 The Role of Data Latency and Their Applications 

Data latency refers to the length of time between the collection of data and the 

practical application of the results deriving from modelling/analysis procedures. Table 1 

categorises the different levels of latency in data (Barlow, 2013), from machine-speed 
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real-time to archive latency, and describes some of the possible applications in urban 

planning and response. These are important distinctions to make because the latency of 

data in ABMs is probably in the long-term planning category. Incorporating real and near-

real-time data for ABMs unlocks better decision-making for applications requiring minimal 

latency.  

Table 1 Data latency and example applications 

Latency Level Description and Example Applications 

Immediate Response 
(Machine-speed Real-time) 

Automated decision-making for rapid response such as traffic routing, congestion 
control, utility management. Minimal human intervention required. 

Rapid Response (Near Real-
time) 

Predefined responses coordinated by humans for quick response planning e.g., short-
term public transportation adjustments, law enforcement despatching. 

Daily Planning (Short Latency) Human-machine collaboration for decisions within a day such as daily route planning 
for waste management, minor infrastructure repair, park maintenance. 

Weekly Planning (Medium 
Latency) 

Automated suggestions with human review for decisions over a week such as 
neighbourhood resource allocation, parking regulations, public service planning. 

Long-term Planning (Long 
Latency) 

Human-led decisions aided by machines over weeks to months e.g., public space 
redesign, road construction planning, seasonal urban farming planning. 

Extended Planning (Extended 
Latency) 

Mainly human decision-making over years for urban development planning, zoning 
law changes, and public transportation network redesign. 

Retrospective Analysis 
(Archive Latency) 

No automation, long term historical data used for retrospective studies and long-term 
planning, like demographic changes, urban growth patterns. 

1.2.3 Nowcasting and Data-Assimilation 

Nowcasting and methods of data assimilation are two potential related methods that 

can be used to address the challenge of utilising real-time data within ABMs (Tang and 

Malleson, 2022, Ternes et al., 2022, Kieu et al., 2022, Heppenstall et al., 2021, Shi et al., 

2021, Hunt et al., 2007). Nowcasting (a portmanteau of now and forecasting) is a process 

that involves making very short-term predictions about the current or immediate future 

state of a system, and is widely used in fields like meteorology and economics, that 

require rapid, real-time predictions (Giannone et al., 2008, Shi et al., 2017, Albani et al., 

2022). Data assimilation is a statistical method that combines observational data with prior 

knowledge (usually from a predictive model), to estimate the current state and potentially 

the future evolution of a system. Data assimilation is a popular method for providing 

nowcast estimates as it can be used to fill in gaps where observational data is missing or 

sparse (Hunt et al., 2007, Wang et al., 2019, Shi et al., 2021). 
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1.2.4 The Application of Enhanced Situational Awareness in Crowd Control 

Enhanced situational awareness arising from nowcasting and data-assimilation 

methods, applied to crowd control shows potential in risk management. Effective 

management of crowds can help prevent catastrophic incidents such as crowd crushes 

when critical density thresholds are surpassed (Haghani and Lovreglio, 2022), and 

support epidemic/pandemic response planning by limiting sudden outbreaks (Yadav et al., 

2022). There are several concerns stemming from overcrowding events that can be 

mitigated through more effective management and response: 

• Physical injury – high densities of people can lead to accidents and injuries, 

from minor ones like tripping and falling to major incidents like stampedes 

and trampling – resulting in the death of hundreds of people each year 

(Sharma et al., 2023).  

• Inadequate emergency response access – it can be difficult for 

emergency personnel to respond effectively to incidents, where, in extreme 

cases, emergency exits may become blocked, or individuals may not be able 

to evacuate safely in emergencies such as fires or natural disasters 

(Akinwande et al., 2015).  

• Disease transmission - rapid spread of infectious diseases which is 

particularly concerning during an epidemic/pandemic or outbreak situation 

(Yadav et al., 2022). 

• Social disruption - increases in anti-social behaviour, crime, or violence, 

and the disturbance of local communities. 

• Infrastructure stress - accelerated wear and tear of the built-environment 

occasionally leading to system failure e.g., public transport. 

1.3 Practical Considerations 

There are two underlying challenges to nowcasting. These are questions of 

temporal dynamics, or how the recorded values at a sensor changes over time; and 

spatial interaction, or how strongly sensor locations interact with one another (based on 
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the sensor values) (Batty, 2013). The urban observatory data offers an opportunity to 

improve insight into these changes by using pedestrian flow data. The pedestrian flow 

data on the high street is collected at relatively frequent intervals and should not only offer 

insight into the temporal dynamics but open the door to future research that would give 

some indication of the strength of spatial interaction between different points in the city.    

1.4 Summary 

To encapsulate the complexity inherent in cities, it is necessary to merge our 

simulated model of the observed urban system with data that can calibrate and validate 

the simulation. Encouragingly, the past decade has witnessed a significant increase in the 

number of IoT devices, many of which generate 'big data'. Big data — characterised by 

the five Vs: volume, velocity, variety, veracity and value — is vital for real-time 

applications in complex environments such as pedestrian networks (Batty et al., 2012, 

Batty and Milton, 2021). The temporal frequency and depth of the Urban Observatory data 

offers an opportunity to investigate some of these complex temporal dynamics, and to 

capture some of the micro dynamics, methods for pattern recognition are required.  

1.5 Aims and objectives 

1.5.1 Primary research aim 

The aim of this project is to build a roadmap for creating a cloud-based 

unsupervised workflow that detects unusual patterns in the data, through fast, incremental 

evaluation of data that is scalable and deployable for real-time applications. This would 

enable rapid identification, and targeted response to overcrowding events before they 

escalate into emergencies. The objective is to close the OODA loop (Observe, Orient, 

Decide, React) by using real-time data to create tools for observation and orientation 

(Boyd, 1996). However, leveraging real-time data for effective event detection and 

intervention is not without its challenges. The first of these challenges is understanding 
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what quality of data is needed to make useful predictions which forms the primary 

research question for this dissertation. 

1.5.2 Research questions 

How does the quality of IoT pedestrian data affect our ability to make 

predictions? 

This is the main question that is addressed in this dissertation. It is further broken 

down into three separate objectives. 

1. Can we detect anomalies without pre-classification and are there any 

patterns to the anomalies? 

2. Does increasing the number of input features improve the performance of 

the model? 

3. How does perturbing the input data (changing its quality) affect the results of 

the model? 

1.5.3 Deliverables 

1. A review of existing literature for the subject area. 

2. A comprehensive exploratory data analysis report. 

3. A methodology explaining the approach taken by this research. 

4. A discussion of the results and future work. 
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2 LITERATURE REVIEW 

In this section a variety of methods are discussed that relate to the research 

questions discussed in the previous section. This section will start with a brief overview of 

how pedestrian behaviour has been recorded and modelled in the past and introduce 

some of the data-driven approaches necessary for situational awareness. It will then look 

at how temporal patterns can be extracted from time series data and the different 

approaches that have been used to convert extracted patterns into predictions. Finally, it 

will discuss clustering and anomaly detection methods.  

2.1 Modelling Pedestrian Behaviour 

Helbing and Molnar (1995) first pioneered the ‘social force model’ approach that 

treats pedestrians as individual, intelligent agents who are influenced by a combination of 

physical forces and social factors. This work has provided the foundation for many later 

studies developing theoretical models that seek to describe pedestrian dynamics and 

behaviour. Over the last decade, as datasets on crowd behaviour are becoming readily 

available, many of these models which have previously not been validated can now be 

tested using real-world datasets (Draghici and Steen, 2019).  

2.1.1 Data-Driven Approaches 

Much of the academic literature around crowd behaviour focuses on measuring the 

dynamics of a crowd, from a video scene, or from application data using metrics like 

density and speed. For video sensors, detecting crowds, is largely a computer vision 

problem, and this modelling approach can detect crowding when certain speed/density 

thresholds have been crossed (Kretz, 2011, Wirz et al., 2013). Draghici and Steen (2019) 

talk about spatiotemporal features necessary for capturing crowd behaviour such as 

densities and movements . According to Still (2019) densities of up to 3 people per square 

metre with a flow of up to 82 people/metre/minute constitute a low risk crowd. Whilst being 
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able to accurately calculate the risk of crowding in a given scene is useful, it is difficult to 

conceive how techniques that involve measuring the properties of a crowded video scene 

would allow for predictions of crowding events with an appropriate timeframe in which to 

coordinate a response. To generate predictions of when crowds may form, it is necessary 

to aggregate this data so patterns that lead to crowding events can be identified through 

spatiotemporal analysis on a wider scale (Hoang et al., 2016, Xie et al., 2020, Jiang et al., 

2022). The challenge presented in this dissertation is around understanding the temporal 

dynamics that give rise to crowding events (anomalous flow detection using forecasting) 

rather than trying to analyse the risk as one of the events takes place.  

A range of data sources have been used to predict flow using aggregated data. 

Automated methods for collecting pedestrian flow data can be classified into 

infrastructure-based (network) and application-driven (devices) (Bamaqa et al., 2022). 

Application-driven data collection makes use of mobile on-board (visual and non-visual) 

sensing (e.g., GPS for location and accelerometer for motion) or software sensing (e.g., 

Twitter) to provide real-time updates of crowd conditions such as location, speed, and 

direction (Felemban et al., 2020, Mohamed et al., 2019). 

Many approaches to modelling crowding involve mobile phone datasets (Fu et al., 

2021, Cecaj et al., 2020, Li et al., 2022). While mobile phone datasets provide a rich 

dataset to train a model on, it is not possible to receive this data in a real-time stream as 

there are many practical, legal and ethical problems standing in the way (Taylor, 2016). 

Whilst there are certain applications where real-time collection of location is feasible such 

as large organised events like pilgrimages where attendees might download an app that 

collects their location data (Felemban et al., 2020). In most other instances automated 

collection of real-time data largely is limited to stationary sensors. There are many 

approaches that use data fusion highlighted by (Li et al., 2021), which seek to combine 

application data with infrastructure-based data sources. However, there has been little 
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research into how far infrastructure-based data sources can go in solving the prediction 

problem alone.  

Pedestrian sensors are becoming more prevalent in cities (cameras using object 

detection algorithms to yield aggregated data) and there are an increasing number of 

public and private services providing centralised, data repositories that make this data 

accessible (CoM, 2023, UO, 2023, VivaCity, 2023). The depth of temporal data has 

passed the threshold required to train reasonably accurate machine learning models, and 

there is an increasing amount of research utilising this data to develop predictive models 

(Peppa et al., 2021, Asher et al., 2023). The advantage of data from pedestrian sensors is 

that it is relatively temporally complete, providing a rich source of information from which 

to extract the complex patterns and micro dynamics discussed in the previous section.  

As research into the utilisation of pedestrian flow data is still relatively limited, the 

literature review will investigate research into urban flow predictions. This more general 

term encapsulates all agents that move about an urban area with autonomy (cars, bikes 

etc. but not bus, trains etc.). The temporal patterns of the these urban flows are subject to 

the same characteristics discussed in 1.2.1 (Shi et al., 2021).  

2.1.2 Situational Awareness 

Turning predictive models powered by real-time data into a valuable tool for decision 

making requires overcoming some other significant problems that lie at the heart of the 

situational awareness. As we have discussed, we can roughly categorise existing studies 

on pedestrian volume estimation into two main approaches: data-driven prediction and 

model-driven prediction (Li and Wu, 2021, Jiang et al., 2022). Data-driven prediction 

commonly relies on static sensors like CCTV and traffic cameras, producing data specific 

to these locations (Peppa et al., 2018, Ide et al., 2017, Chen et al., 2021). However, to 

generate a comprehensive and timely estimation of pedestrian volume i.e., nowcasting, a 

combination of data-driven and model-driven approaches will be necessary.  
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This combination introduces analytical complexities due to the inherent non-

Gaussianity, high dimensionality, and nonlinearity in the data. For example, pedestrian 

flows can exhibit non-Gaussian distributions, variables such as time of day or weather 

conditions introduce high dimensionality, and complex interactions between pedestrians 

and their environment add nonlinearity. To tackle these complexities, approximation 

methods such as the extended Kalman filter, Gaussian sum approximations, grid-based 

filters, and Sequential Monte Carlo have been proposed. However, the first two methods 

often fail to capture all the critical statistical features of the processes, leading to 

suboptimal results (Doucet et al., 2001). While grid-based filters, which rely on 

deterministic numerical integration methods, can yield accurate results, they are 

challenging to implement and computationally demanding, particularly when dealing with a 

high number of variables or 'dimensions' (Doucet et al., 2001).  

2.2 Temporal Pattern Extraction 

Temporal pattern extraction refers to the process of identifying and analysing 

patterns or regularities in data over time. These patterns can provide valuable insights into 

the underlying processes that generate the data, enabling predictions about future events 

or explaining past occurrences (Chatfield, 2003). The extracted patterns can take many 

forms such as:  

• Trends - increasing or decreasing values over time such as urban 

development, population growth, and changing habits. 

• Seasonality - patterns that repeat at regular intervals such as holiday 

patterns or school/university term dates. 

• Cycles - patterns that occur over irregular, often longer, periods (Hyndman 

and Athanasopoulos, 2018) such as city-wide festivals or sporting events. 

• Time series motifs - recurrent sub-sequences in the time series data 

(Lonardi and Patel, 2002) such as a surge in pedestrians during lunch hours 

(12-2pm) and after work (5-7pm) on weekdays. 
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• Time-delay embedding structures - current data is seen to affect 

subsequent data for a short period (Kantz and Schreiber, 2004) for example, 

paydays or specific sale days might influence counts on subsequent days.  

Understanding the temporal patterns in pedestrian data is a critical part of the data 

mining process needed to generate useful insight about risk. Lin et al. (2003) give a 

summary of the time-series data mining problems that are solved by pattern extraction (for 

more complete definitions of the following term see [GLOSSARY]): 

• Indexing: Given a query time series 𝑄, and some similarity/dissimilarity 

measure 𝐷(𝑄, 𝐶), find the most similar time series in database 𝐷𝐵. 

• Clustering: Find natural groupings of the time series in database 𝐷𝐵 under 

some similarity/dissimilarity measure 𝐷(𝑄, 𝐶). 

• Classification: Given an unlabelled time series 𝑄, assign it to one of two or 

more predefined classes. 

• Anomaly Detection: Given a time series 𝑄, and some model of “normal” 

behaviour, find all sections of 𝑄 which contain anomalies, or unexpected 

behaviour. 

The tasks outlined by Lin et al. (2003) set the groundwork for understanding and 

extracting patterns from time-series data. Early prediction methods attempted to capture 

patterns through dimensionality reduction (Figure 1). While more computationally efficient, 

these methods may not fully capture more intricate patterns within the data.  
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Figure 1 The most common representations for time series data (Lin et al., 2003) 

With the growing complexity of time series data, especially in the realm of big data, 

the necessity for methods capable of handling higher dimensionality and complex patterns 

has risen. Consider pedestrian behaviour on a busy city street - dimensionality reduction 

techniques might capture the overall patterns of foot traffic - such as increased activity 

during lunch hours - but they might fail to capture more intricate patterns, such as the 

interplay between weather, organised events, and the day of the week, which could 

drastically influence pedestrian counts. These subtle, interdependent patterns often 

require the flexibility and nuance that machine learning models provide, and why they 

have started to supersede traditional approaches in building reliable predictive models 

(Längkvist et al., 2014, Wang et al., 2017). 

However, it is not always the case, that bigger equals better, when it comes to 

modelling. Makridakis et al. (2018) find that for single-step forecasts, statistical models like 

ARIMA outperform machine learning models in terms of accuracy when tested on 

benchmark datasets. The authors lay out common pitfalls that result in poor forecasting 

performance and their research highlights the importance of baselining any non-linear 

black-box machine learning model against a linear and interpretable statistical one.  
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2.2.1 Classical Machine Learning Approaches 

In recent years there has been a burgeoning field of research that seeks to apply 

machine learning methods (ML) to vehicular traffic prediction for which a multitude of 

approaches have been tested (Dai et al., 2020, Xie et al., 2020, Peppa et al., 2021). 

Classic ML approaches predict the traffic condition by learning the statistical regularity 

from historical traffic data. However, these approaches can sometimes ignore the 

temporal features of traffic data (Wu et al., 2004, Sun et al., 2006, Dai et al., 2020). This 

can occur for the following reasons: 

• Lack of temporal ordering - Classic machine learning models lack an 

internal mechanism to remember and leverage past information (Bagnall et 

al., 2017). 

• Stationarity assumption - Many real-world time series data exhibit non-

stationary behaviours, such as trends and seasonality, which classic ML 

models might fail to handle appropriately (Hyndman and Athanasopoulos, 

2018). 

• Lack of long-term dependency recognition -  An event that occurred ten 

time steps in the past may influence the current observation, but many 

models struggle to identify and learn from these relationships (Bengio et al., 

1994). 

• Inadequate feature engineering - Without careful feature engineering 

(which can be complex and time-consuming), classic ML models might fail to 

capture essential temporal features like seasonality, cyclical patterns, trends, 

etc (Guyon and Elisseeff, 2003). 

Whilst there are some cases where a classical approach like Random Forest 

outperformed more complex models (Peppa et al., 2021), a more common approach is to 

use a more complex machine learning model like the Recurrent Neural Network (RNN). 

RNNs are considered the natural choice for dealing with time-series data as they can 

incorporate hidden states, which capture information about what has been seen so far in 

the data sequence. The 'memory' maintained by an RNN’s hidden state helps it capture 
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these dynamics, making it capable of understanding temporal dependencies, such as the 

influence of past events on future ones (see 8.2.6 in the glossary for further detail) 

(Sutton, 1988, Peddinti et al., 2015). 

2.2.2 Deep Learning Approaches 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) (see 8.2.7 and 

8.2.8 in the glossary) are both popular types of RNN as they include mechanisms to store 

and access information over longer periods of time. They address the vanishing or 

exploding gradient problem that basic RNNs are subject to. These problems occur 

because RNNs process sequence data iteratively (the current output is dependent on the 

previous computations). This means that the gradients, which are used to update the 

model's weights, tend to get exponentially smaller or larger as they are backpropagated 

through time (depending on whether the weight of the recurrent connections are less than 

or greater than one) (Pascanu et al., 2013). For vanishing gradients this means that the 

model ‘forgets’ long-term dependencies and exploding gradients cause model instability 

and convergence failure. LSTMs use a memory cell that includes gates to control the flow 

of information into and out of the cell, which helps to mitigate the vanishing gradients 

problem and allows the network to learn longer-term dependencies (Hochreiter and 

Schmidhuber, 1997). The exploding gradient problem can be mitigated by gradient 

clipping (limiting the maximum value of the gradient) (Bengio et al., 1994).  

LSTMs are used extensively in urban flow prediction (Wu and Lin, 2019, Du et al., 

2020, Jing et al., 2021). Dai et al. (2020) propose a framework for capturing both the 

temporal dynamics and the spatial complexity of traffic data using an LSTM/GCN 

architecture to make predictions. The results of their combined architecture (trained on 

both spatial and temporal features) outperformed the GCN (trained solely on spatial 

feature), the LSTM, and T-GCN (both trained solely on temporal features). Of the two 

models trained on the temporal features the LSTM performed the best. Fu et al. (2016) 
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similarly compare the effectiveness of two models, LSTM and GRU for short-term traffic 

speed forecasting. The authors found that both networks outperformed the baseline 

ARIMA model in terms of MAE and MSE, but the simpler GRU architecture outperformed 

the LSTM. It is, however, not clear how much data was used in the training process, only 

that the LSTM and GRU were trained for the same number of epochs. Some research 

utilises convolutional neural networks (CNNs) to capture the spatial features and GRU for 

the temporal aspects of traffic data. It found that despite the CNN’s usefulness in 

Euclidean spaces, it fell short in capturing the spatial features of complex topological 

transport networks (Cao et al., 2017). 

2.3 Anomaly Detection 

A useful distinction between types of time-series anomalies can be achieved by 

categorising  them from two perspectives: granularity and behavioural characteristics is 

worth noting (Blázquez-García et al., 2021, Choi et al., 2021, Cook et al., 2019): 

From the granularity perspective: 

• Point Anomalies: These are individual data points significantly deviating 

from others in the time series or their local neighbours in a particular time 

frame. Causes can include noise, sensor malfunctions, or short-term system 

disruptions. 

• Subsequence Anomalies: These are sets of consecutive observations 

within the time series that deviate from expected patterns. However, each 

point within these subsequence’s may be within the expected range when 

examined individually. 

• Sequence Anomalies: In the context of multivariate input data, a sequence 

anomaly is a univariate time series that behaves significantly differently from 

others. 

From the behavioural perspective: 



Carrow Morris-Wiltshire           MRes Dissertation 

  16 

 

• Point Anomalies: Like the point anomalies in granularity, these are 

observations or sequences that abruptly deviate from the normal state of the 

entire dataset. 

• Contextual Anomalies: These are observations or sequences that may not 

globally deviate from the normal range but are unexpected when considering 

the given context. 

• Collective Anomalies: These are sets of observations that show unique 

patterns relative to the rest of the data. 

A recent survey on unsupervised ML discusses a unified perspective on applications 

for anomaly detection and clustering, both of which are typically unsupervised methods for 

mining data patterns (Liu et al., 2023).  

Table 2 Data Used in Model-based Techniques in Univariate Time Series (Blázquez-García et al., 2021) 

Blázquez-García et al. (2021) discuss detection of outlier detection for streaming 

time series. The authors define techniques that apply to streaming data as those that are 

able to detect outliers by determining whether or not a new incoming datum is an outlier 

as soon as it arrives without having to wait for more data. They also highlight that although 

there are many techniques that can theoretically deal with streaming time-series, very few 

are able to adapt incrementally to the evolution of the stream. The simplest estimation 

models use basic statistics like the median or median absolute deviation (MAD) to obtain 

𝑥�̂� using either the full series or grouping the data into equal length segments (Mehrang et 

al., 2015). Dani et al. (2015) use the mean of each segment to determine the expected 

value of the points within that segment, and an adaptive threshold 𝜏𝑖  =  𝛼𝜎𝑖,where 𝛼 is a 

fixed value and 𝜎𝑖 is the standard deviation of segment 𝑖. Prediction models that retrain 

the model as the time-series evolves: (Zhou et al., 2018) fit an ARIMA model within a 

sliding window to compute the prediction interval, so the parameters are refitted each time 

 Data used → Expected value → Point outliers 

Estimation models [𝒙𝒕−𝒌𝟏
, … , 𝒙𝒕, … , 𝒙𝒕+𝒌𝟐

] → 𝑥�̂� → |𝑥𝑡 − 𝑥�̂�| > 𝜏 

Prediction models [𝑥𝑡−𝑘 , … , 𝑥𝑡−1] → 𝑥�̂�   
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that the window moves a step forward. This is a useful feature of anomaly detection as it 

ensures the model continuously adapts to new data.  

2.3.1 Clustering Methods 

Clustering is one of the most used unsupervised learning algorithms. The goal of 

clustering is to organise  objects  into  homogeneous  groups  where  the  intra-group 

similarities are maximized and the inter-group similarities are minimised (Chen et al., 

1996). Traditional clustering methods generally fall into five categories: partitioning,  

hierarchical, density-based, grid-based, and model-based methods (Jain, 2010). However, 

time-series data presents challenges to traditional clustering methods due to its sequential 

nature and possible dependence on time lags. High dimensionality, noise, and the 

temporal dependencies in the data can make clustering based on raw values problematic 

(Aghabozorgi et al., 2015). 

Based on the literature, either dynamic time warping (DTW) or Mahalanobis seem to 

be sensible choices for a specific distance metric (Ding et al., 2008). DTW is a mapping of 

points between a pair of time series designed to minimise the pairwise Euclidean distance 

and is used for comparing sequences or time series data, especially when sequences can 

differ in length (Mei et al., 2016). Mahalanobis distance is a measure of the distance 

between a variable and a distribution which is calculated by a mean and the covariance 

matrix. It is used for determining the "distance" of an observation from a group of 

observations with multivariate normal distribution, taking into account the correlations of 

the variables (Sitaram et al., 2015). Both methods allow for multivariate time-series to be 

used and crucially do not require that lengths of all time-series are equal, which is unusual 

in real data (Liu et al., 2023). 

There are two major design criteria in clustering methods, the clustering algorithm, 

and the distance metric. Javed et al. carry out a benchmark study using eight clustering 

algorithms (partitional, density-based and hierarchical) and three distance metrics, 
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(Euclidean, dynamic time-warping and shape based). The authors concluded that it is 

necessary to test a pool of clustering algorithms during exploratory data analysis (EDA) as 

the accuracy of different algorithms is highly sensitive to the particular time-series dataset 

(Javed et al., 2020). It is worth emphasizing that in time-series clustering, the choice of 

distance metric can significantly influence the resulting clusters, 

Belhadi et al. investigate a space-time series clustering algorithms, the state of the 

art, and their limitations. The conclusions drawn by the authors come down to four 

challenges that need to be solved (Belhadi et al., 2020):  

• Run-time of algorithms 

• Quality of performance for complex and big time series data 

• Correlation between space-time series data 

• Adaptation of advanced and specialised clustering techniques 

2.4 Summary 

1. Anomalies in time series can be categorised based on their granularity 

(point, subsequence, sequence) and behavior (point, contextual, collective). 

2. Traditional clustering methods face challenges with time-series data due to 

issues like high dimensionality, noise, and temporal dependencies. 

3. Classical machine learning approaches to traffic prediction can sometimes 

overlook the temporal features of traffic data due to reasons like lack of 

temporal ordering, assumption of stationarity, inadequate feature 

engineering, and inability to recognise long-term dependencies. 

4. Despite their potential, deep learning models like LSTMs may not always 

outperform traditional statistical models, highlighting the need for 

benchmarking. 

5. Classical machine learning approaches can sometimes struggle with 

recognizing long-term dependencies in data and may require complex 

feature engineering to account for temporal patterns. 
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3 METHODOLOGY 

The methodology is split into four sections. The first section will cover how the 

project can be accessed, what software is used, and how it was implemented. The second 

section will cover the data sources used in this project. The third section will highlight the 

cleaning and preprocessing methods used to prepare the data for modelling. The final 

section will show the different modelling workflows and give a rationale for selecting each 

of the models and evaluation metrics, as well as a brief explanation of the model 

architecture and evaluation metrics.   

3.1 Research Objectives 

The research objectives for this project are broadly split into three parts. The first 

part is anomaly prediction, which aims to test a range wide range of trained models on 

their ability to detect unusual patterns in the validation data. The second test compares 

the effect of increasing the prediction horizon on the model error. Logic dictates that a 

larger horizon equates to greater error in the predictions, but the purpose of this test is to 

find the largest horizon value that a model still makes predictions with low enough error. 

The final test covers data robustness and looks at the effect of the varying data 

completeness on the model’s prediction error. The purpose of these three tests is to 

develop an understanding what the data preprocessing pipeline for urban observatory 

data pedestrian data would look like. The preprocessing pipeline will need to provide data 

suitable for training AI models with minimal human intervention.  

Two model architectures are used, a simple LSTM and a linear model. Both are 

implemented with a number of hyperparameter options, effectively producing different 

models (for a definition of hyperparameters see 8.2.1). The state of the model (the 

parameters extracted from model training) are then saved and evaluated on another set of 

hyperparameters. For a more detailed explanation of this process see 3.5.  
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3.1.1 Anomaly prediction test 

1. Develop a modelling workflow that identifies anomalies in the data using 

single-step univariate prediction validating on unseen data. 

2. Generate additional input features (feature engineering) to assess how the 

model’s performance changes for anomaly prediction. 

3.1.2 Horizon test 

3. Measure the change in prediction accuracy as the prediction horizon 

increases for univariate and multivariate models. 

3.1.3 Data robustness test 

4. Measure the change in prediction accuracy as the data completeness of the 

training data is reduced for univariate and multivariate models. 

3.2 Implementation 

The entire reproducible codebase of this project can be found on the projects 

GitHub and can be accessed by cloning the repo and recreating the virtual environment. 

Alternatively, the project can be run directly using docker. The project backend uses 

Python 3, and a number of additional libraries were installed using pip (a full list of 

dependencies is provided). The full exploratory data analysis report is also hosted here 

using Jupyter Book (Granger and Pérez, 2021). 

3.2.1 Software and Tools Used 

For the data preprocessing and exploratory analysis, a standard workflow using 

NumPy, Pandas and Matplotlib has been followed. For the development of supervised 

machine learning models PyTorch was chosen due to its performance, interpretability, and 

ubiquity for machine learning research projects (PapersWithCode, 2023, Paszke et al., 

2019). Scikit-learn has been used for further model evaluation (Pedregosa et al., 2011) 

and SciPy has been used extensively for additional statistical methods (Virtanen et al., 

https://github.com/carrowmw/mres-project
https://carrowmw.github.io/mres-project/2.3_Data_Exploration_Report.html
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2020). Docker has been used to package the analysis to ensure reproducibility on most 

machines. 

3.2.2 Coding and Algorithms 

The different workflows described above are implemented in the script 

model_training_loop.py. The training loop can be used for both univariate and 

multivariate workflows and any combination of hyperparameters. The outputs are then 

saved to a folder, named in accordance with the hyperparameters used in the test.  

In addition to the training loop, two modules have been created in this project to 

assist in the analysis and execute the modelling process called eda_helper.py and 

modelling_functions.py respectively. These modules can be found on GitHub with 

docstrings explaining the purpose of each function. Some of the most important parts of 

the script are included in 9.1 of the appendix, including the LSTMModel and LinearModel 

PyTorch objects and a number of functions relating to the construction of the custom 

DataLoader objects.  

3.2.3 Computational Resources 

All of the processing has been carried out using an Intel Core i7-1270P, 2200 MHz, 

12 Core(s), 16 Logical Processor(s) with 32GB of RAM. The runtimes files for training test 

case can be found GitHub. The DataLoader objects used only a single core so there is an 

opportunity to decrease the runtime. 

3.3 Data Collection 

This subsection covers the primary data source which are two pedestrian sensors 

located on Northumberland Street in Newcastle upon Tyne, UK. It will provide a brief 

overview of how the sensors record data, the data provider, and acquisition procedures 

https://github.com/carrowmw/mres-project/blob/main/analysis_files/model_training_loop.py
https://github.com/carrowmw/mres-project/blob/main/analysis_files/modelling_functions.py
https://github.com/carrowmw/mres-project/blob/main/analysis_files/modelling_functions.py
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before providing a description of the dataset. It will then briefly cover the auxiliary data 

source which is the term dates of the two major universities in Newcastle upon Tyne.  

3.3.1 Pedestrian Sensors 

The primary dataset used in this project is a csv dataset from the pedestrian sensors 

operated by the Urban Observatory. The Urban Observatory is based in Newcastle upon 

Tyne led by the Newcastle University and holds an extensive collection of real-time and 

historic data, from a wide range of sensors detecting everything from pedestrians and 

traffic to weather and air pollution. The data is open and freely available. 

The pedestrian sensor collects data using object detection on video footage that 

identifies and counts the heads of individuals in motion. An algorithm computes the 

bearing of each detected head object, categorising its movement into one of sixteen 

possible directional vectors derived from the eight cardinal and intercardinal directions (for 

example, from northwest to southwest or south to east). 

3.3.2 Data Acquisition 

The raw data in this section was collated by a member of the Urban Observatory as 

an initial test dataset for this project and is stored as a single csv file which is available on 

GitHub. The data is also available through the Urban Observatory REST API and custom 

data loaders have been built for accessing the data this way during this project (available 

on GitHub). 

3.3.3 Sensor Data 

The data from two pedestrian sensors have been used in this project. Both have 

been collecting data intermittently over a period of roughly 3 years at 15-minute intervals 

in the same location but observing different sides of the street (Figure 2 and Figure 3). 

https://github.com/carrowmw/mres-project
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The pattern of intermittency is unique to each sensor shown in Figure 7. Table 3 to Table 

5 show the features and an overview of the dataset.  

The dt field contains the timestamp for the period of flow aggregation which is 15 

minutes in the raw data. The value field contains the total number of pedestrians detected 

over the 15-minute period, and the dir field contains the direction of movement. For the 

sensors used in this project (shown in Figure 2) only the four cardinalities in the diagram 

are recorded (northwest to southwest, southwest to northwest, northeast to southeast, 

southeast to northeast). The west facing sensor only collects the first two vectors and the 

west facing sensor collects the last two.  

The observations for veh_class, location, and category in this case are always 

‘person’, ‘NclNorthumberlandStSavilleRowWest’ or 

‘NclNorthumberlandStSavilleRowEast’, and ‘flow’ respectively (Table 4).  

Table 5 shows a description of the raw dataset. There are just under 80,000 

observations for each sensor, out of an expected 93,006 for the given time period 

meaning the time series is about 85% complete (missing data gaps are shown in Figure 

7).  

Table 3 Features and data types 

Feature Data type 

dt Object 

value int64 

veh_class Object 

dir Object 

location Object 

category Object 

 

Table 4 Randomly sampled records from the raw dataset 

dt value veh_class dir location category 

2022-08-18 
02:45:00 

4 person southwest_to_northwest NclNorthumberlandStSavilleRowWest flow 

2022-06-11 
20:15:00 

9 person northwest_to_southwest NclNorthumberlandStSavilleRowWest flow 

2022-03-02 
23:15:00 

9 person northeast_to_southeast NclNorthumberlandStSavilleRowEast flow 

 

Table 5 Description of the raw dataset 
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Direction Length Length if complete Completeness Start datetime End datetime 

East 79522 93006  85.5%  2021-12-02 14:00:00 2023-03-31 23:45:00 

 West  79787 93006  85.8%  2021-12-02 14:00:00 2023-03-31 23:45:00 

 

Figure 2 shows the approximate field of view for both the sensors and the 

movement trajectories (shown as solid arrows). Figure 3 shows a picture of the two 

sensors used in this project, which are located on a lamppost in the middle of the street. 

Figure 4 shows a map of Northumberland Street and the connecting side streets. It is 

worth noting that the street lies in the middle of the central business district and is limited 

to pedestrians use only (no bicycles or scooters). 
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Figure 2 East and west facing sensor diagram 

 

Figure 3 Pedestrian sensors on Northumberland Street 
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Figure 4 Map of Northumberland Street and the local area (pink circle is the sensors’ location) 

3.3.4 Auxiliary Data Sources 

Term time data from the Newcastle University and Northumbria University websites 

was extracted for use in the modelling process. This is for use in the multivariate 

modelling workflows (see section 3.4.5).  

Table 6 University Term Dates 

University Academic Year Term Start Date End Date 

Newcastle University 2021-22 Term 1 2021-09-20 2021-12-17 

Newcastle University 2021-22 Term 2 2022-01-10 2022-03-25 

Newcastle University 2021-22 Term 3 2022-04-25 2022-06-17 

Newcastle University 2022-23 Term 1 2022-09-19 2022-12-16 

Newcastle University 2022-23 Term 2 2023-01-09 2023-03-24 

Newcastle University 2022-23 Term 3 2023-04-24 2023-06-16 

Northumbria University 2021-22 Term 1 2021-09-20 2021-12-17 

Northumbria University 2021-22 Term 2 2022-01-10 2022-04-01 

Northumbria University 2021-22 Term 3 2022-04-25 2022-05-27 

Northumbria University 2022-23 Term 1 2022-09-19 2022-12-16 

Northumbria University 2022-23 Term 2 2023-01-09 2023-03-24 

Northumbria University 2022-23 Term 3 2023-04-17 2023-06-02 
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3.4 Data Preprocessing 

The preprocessing subsection covers why cleaning and formatting is particularly 

important in time-series analysis. Then the full pre-processing workflow developed for this 

project is broken down step by step. This is followed by a more in-depth overview of the 

missing data handling, and the feature extraction and engineering that is used for the 

multivariate modelling process.  

3.4.1 Requirements for Time Series Analysis 

In time-series analysis it is important to use a continuous sequence of data for 

several reasons highlighted below. A continuous sequence in this context means data 

observations that are measured at successive points in time and at uniform intervals (15-

minutes). 

- Temporal dependency – there is an explicit order dependence between 

observations the structure of which provides an additional source of information 

(Chatfield, 2003). 

- Seasonality and trends – repeating patterns and trends over time exist within 

most time series data and by training on a continuous sequence the model can 

learn these trends (frequencies can also be artificially added as input features to 

the model). 

- Autocorrelation – time-series often exhibit autocorrelation, where a value is 

influenced by its predecessors, a feature which can only be captured in continuous 

data sequences.  

- Avoiding leakage – using continuous sequences helps to ensure we are not 

using information from the future to predict the past which is important when 

considering train-test splits (trends in the data may be lost by evaluating the model 

using (test) data that predeceases the training data) (Hyndman and 

Athanasopoulos, 2018).  
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- Model stability – this refers to models’ ability to generate consistent predictions 

over time and its sensitivity to slight changes in the input data and the models’ 

parameters. Stability relies on the model learning the trends rather than the noise 

in the data. Model stability can be assessed using cross-validation methods 

(Hyndman and Athanasopoulos, 2018).   

3.4.2 Preprocessing Workflow 

The data is cleaned and formatted using the preprocess_data() function that can 

be found in 9.1.1 of the appendix. This function can implement any combination of the 

following cleaning and formatting steps depending on the workflow it is being used in: 

1. Removing the directionality field dir. This function groups the data to a single 

bidirectional flow value on each timestamp. The original data contains two 

unidirectional flows with associated trajectories shown in Figure 2. 

2. Selecting data that meets a daily completeness threshold. This function 

selects only observations that are made on a day that there at least a 

minimum threshold of observations for. This is discussed in more detail in 

the next section and the full docstring and function can be found in 9.1.2 of 

the appendix.  

3. Finding the longest sequence of days that continuously meet the daily 

completeness threshold. This function performs a brute force search for the 

longest sequence, and times out when a longer sequence can’t be found. 

The full docstring and function can be found in 9.1.3 of the appendix. 

4. Adding auxiliary data (term dates) for multivariate analysis. This function 

reads in the auxiliary data and appends them to the sensor time series.  

5. Adding engineered data (periodicity features) for multivariate analysis. This 

function creates the periodicity features and appends them to the timeseries. 

The periodicity features are calculated using a simple equation and which is 

explained in 9.1.4 of the appendix.  

6. Scaling the value data field using a standard scaler from scikit learn. Using a 

standard scaler preserves the pattern of the data and allows for values 
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outside of the range of the dataset. Any additional fields are normal (between 

1 and -1).  

7. Resampling the data to get average flow over a longer period, for example 

an hour or a day. 

3.4.3 Missing Data Handling 

Any days that do not contain enough data to be useful for training the models are 

removed. For most of the exploratory analysis a daily completeness threshold has been 

set at 100%. This is because most time-series analysis use continuous data sequences 

as machine learning models designed for learning time-series are particularly sensitive to 

gaps in the data. The function discussed in step three above then calculates the longest 

sequence of consecutive days in the data for at the chosen threshold. The effect of the 

threshold on the maximum sequence length that can be found is shown in the diagram in 

Figure 5 and Figure 6. At a 94% threshold we get a sequence length of 76 days for both 

datasets. Whereas at 100% threshold this drops to 9 days for both datasets. Figure 6 

shows that at a 100% threshold <40% of the original data remains (>60% of the 

observations exist in days that do not have a complete set of observations). Whereas at 

94% there is still >80% of the original data (<20% of the observations exist in days that do 

not have at least 94% of their observations). The pattern of this removal for three different 

thresholds is shown in Figure 7 - note the sudden jump in sparsity between 94% and 

100% completeness.   
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Figure 5 Effect of threshold on maximum sequence 
length 

 

Figure 6 Effect of threshold on removal of total 
records 

 

 

 

 

 

Figure 7 Total data at 100%, 94% and 0% thresholds (y axis – total records per day, x axis - date) 

3.4.4 Feature Extraction 

Feature extraction helps with data understanding and to identify patterns and 

features. The periodicity first needs to be extracted from the data so the most powerful 

frequencies can be identified. By creating periodicity features based on the most powerful 
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signals they can be fed to the models to capture some of the patterns with less training. 

This is particularly important for linear models which have no capacity for storing temporal 

dependencies of data points. Though LSTMs are capable of capturing these patterns, 

including them as input features can help speed up model convergence. To extract the 

most powerful signals, a Fourier method will be used.  

The Fourier Transform is a mathematical technique used in signal processing. It is a 

way of breaking down a complex signal into a set of simple sine waves of different 

frequencies. This allows the signal to be analysed in the frequency domain, which can 

reveal important features that are not readily apparent in the time domain (Bloomfield, 

2004). One limitation of traditional Fourier methods, however, is that they assume the data 

is stationary - i.e., its properties do not change over time. This is not the case with the 

data used in this project and trends or changes in variance over time can be expected. 

The final criteria for method selection are that the data is incomplete, and for now, data 

imputation or interpolation is being avoided as this might introduce artificial patterns.  

The Lomb-Scargle Periodogram (LSP) is a Fourier method which is implemented in 

the `scipy` library and computes a Fourier-like power spectrum estimator. LSP involves 

fitting a model to the data at each candidate frequency and selecting the frequency that 

maximises the likelihood, which makes it more flexible and suitable for data that doesn't 

align neatly with whole cycles of sine waves. One of the key assumptions made by the 

Periodogram is that the noise is Gaussian and evenly distributed (VanderPlas, 2018). 

The result of the analysis (Figure 8) using the LSP shows that the most powerful 

signals arose at the 12- and 24-hour periods. These are used to create additional input 

features in section 3.4.5. There are barely any perceptible differences in the LSP for both 

sensors except for the west having a slightly more powerful annual signal and slightly less 

powerful diurnal signal.  
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Figure 8 Lomb-Scargle Periodogram – East sensor (top) and West sensor (bottom) 

3.4.5 Feature Engineering 

Feature engineering can be useful to speed up model convergence, especially for 

models not capable of capturing temporal dependencies, like a linear model. Several 

features have been created for this purpose. Figure 9 shows an input window of length 

100 with some of the engineered features. The periodicity features are calculated using 

the following formula: 
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Equation 1 Periodicity 

a =  sin (
2𝜋 ∗ 𝑡𝑥𝑎

24
) 

where 𝑡𝑥𝑎
is the frequency component of the datetime index for the period 𝑎 (see 

9.1.4 for further detail). 

 

Figure 9 A selection of input features used in the modelling 

Table 7 shows the maximum and minimum values for the scaled data. The data is 

scaled using the StandardScaler from the preprocessing module in the sci-kit learn 

library. The scaler standardises a feature by removing the mean and scaling by the unit 

variance 

Equation 2 Standard Scaler 

𝑧 = (𝑥 − 𝑢)/𝑠 

where the mean and standard deviation of the series are 𝑢 and 𝑠 respectively, and 𝑥 

is each value in the series.  

It can be seen in Table 7 the effect on the maximum and values for the data when 

the longest sequence at each completeness threshold has been selected. At 100% the 

range of values is smaller than at 94% as they contain 9 days’ worth of data and 72 days’ 

worth of data respectively.  

Table 7 Max and min values of features after data preprocessing 
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 100%  94%  

name max min max min 

value 3.62 -0.83 3.64 -0.88 

newcastle_term 0.00 0.00 1.00 0.00 

northumbria_term 0.00 0.00 1.00 0.00 

sin_day 1.00 -1.00 1.00 -1.00 

cos_day 1.00 -1.00 1.00 -1.00 

sin_half_day 1.00 -1.00 1.00 -1.00 

cos_half_day 1.00 -1.00 1.00 -1.00 

sin_quarter 1.00 0.86 1.00 -1.00 

cos_quarter 0.02 -0.50 1.00 -1.00 

sin_year -0.38 -0.50 0.97 0.02 

cos_year -0.87 -0.93 1.00 0.26 

Figure 10 shows the distribution of values for the scaled value field.  

  

Figure 10 Distribution of standardised values 

3.5 Modelling 

This section will cover the modelling process, starting with the rationale for model 

selection and then providing an overview of the modelling and evaluation workflow (shown 

in Figure 14 and Figure 15 respectively). 

3.5.1 Rationale for Model Selection 

The linear model was chosen as it is the simplest conceivable model that is suitable 

for both univariate and multivariate problems. It offers a baseline performance to compare 

the LSTM against; and for the multivariate workflow, the weights assigned to each 

variable after training can be extracted. The decision to use both a univariate and 
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multivariate workflow, is because univariate models are simpler to implement and faster to 

train but generally do not perform as well as their multivariate counterparts (Hair et al., 

1998). It is therefore useful to compare the results of with multivariate to see if the 

(potentially) increased performance is worth the extra training time.  

The decision to use LSTMs is a result of the literature review. They are a special 

kind of RNN (see 8.2.6) that are often used in problems that involve sequences, including 

time-series data due to their architecture. Traditional RNNs suffer from the vanishing or 

exploding gradients problem, which makes them inefficient at learning long-term 

dependencies (see 2.2). LSTMs, however, are designed to mitigate this problem. They 

can remember and retrieve information over long sequences. LSTMs maintain a form of 

memory because they can remember or forget information in the sequence using their 

gates (input, forget, and output) which allows them to remember patterns spanning long 

time-periods (see Figure 11). They can be trained with standard backpropagation 

algorithms which enables end-to-end training of deep networks that include LSTMs. 

However, LSTMs involve a more complex architecture and more parameters than 

traditional feed-forward networks or simpler RNNs. This complexity can increase the 

computational requirements (both in terms of memory and CPU/GPU time) and make 

LSTMs slower to train. They also often require large amounts of data to train effectively 

without overfitting, compared to simpler models. Additionally, like many other neural 

networks, LSTMs are  "black boxes”, and it can be difficult to interpret their internal state 

and understand exactly why they're making certain predictions. Future work may consider 

other models like the Transformer which show promising result for high-dimensional 

sequences where long-term dependencies are less important. 

Figure 11 shows the different components within an LSTM cell and Figure 12 shows 

the architecture of the RNN. Each input 𝑥𝑡 is passed through the LSTM cell which decides 

whether to update the model parameters for the next step (shown in Figure 12) or to leave 

it as the previous state.  
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Figure 11 LSTM Cell 

 

Figure 12 RNN Architecture 

3.5.2 Overview 

The linear and LSTM models both follow a univariate and multivariate workflow. This 

gives the following basic model types before hyperparameters are applied.  

• Univariate linear 

• Multivariate linear 



Carrow Morris-Wiltshire           MRes Dissertation 

  37 

 

• Univariate LSTM 

• Multivariate LSTM 

Table 8 provides a description of all of the hyperparameter used in the modelling. A 

test will be performed for every combination of numbers in this table, computing and 

storing a range metrics including the training loss for each epoch of the models, training 

summary statistics, the trained model state, linear model weights, and run time metrics. A 

total of 1,330 models have been trained and evaluated in this analysis, 170 of which were 

linear, and the rest LSTM. The reason for the difference in number of tests between 

models is because the linear model can only accept an input of length 1 

(WINDOW_SIZE). 

The step-size is dependent on the value of the of HORIZON which is an integer 

value denoting the number of 15-minute periods into the future that the model should 

predict. For univariate models the value of INPUT_INDICES and is equal to 0 which refers 

to the value field (pedestrian flow). For the multivariate models the value of 

INPUT_INDICES is list(range(0,11)) which translates to the value field and all of the 

engineered features described in 3.4.5 - these can also be seen in Figure 19. The 

TARGET_INDEX for both models is 0.  

Table 8 Table of Hyperparameters 

Hyperparameter Values 

COMPLETENESS_THRESHOLD 1.0, 0.98, 0.96, 0.94 or 1.0, 0.95, 0.90, 0.80 

INPUT_INDICES 0 or [0,1,2,3,4,5,6,7,8,9,10] 

TARGET_INDEX 0 

WINDOW_SIZE 1 (linear) or 3, 6, 12, 24, 48, 96 (LSTM) 

SEQUENCE_LENGTH ¼ , ½ , ¾ , 1 (proportion of the full sequence length used) 

HORIZON 1, 3, 6, 12, 24 

BATCH_SIZE 8 (for both linear and LSTM) 

LEARNING_RATE 0.1 (with scheduler) 

EPOCHS 20 (LSTM), 50 (Linear) 

OPTIMISER torch.optim.Adam 

CRITERION torch.nn.MSELoss() 

ERROR_DEV list(range(2, 10.01, step=0.1)) 

3.5.3 Model Description 

The data for all of the models use an 80/20 train-test split. The data is further split 

into sliding windows which produce the train inputs, train targets, test inputs, test targets, 



Carrow Morris-Wiltshire           MRes Dissertation 

  38 

 

validation inputs and validation target where the targets contain one value and the inputs 

contain a number of values equal to WINDOW_SIZE (Figure 14). The windows for each 

are then stacked into mini batches (equal to BATCH_SIZE) for training and testing. Figure 

13 shows the effect of the windowing parameters on the structure of the data 

(WINDOW_SIZE, HORIZON, STRIDE). 

3.5.4 Single-Step Models 

The linear model uses a train-test split of 0.7 and 0.3 respectively. For this model 

the testing set is used validate the model as there is no testing step during the training of 

the model so the test set can be considered independent. As the model is linear, the 

weights for how it uses each of the engineered features can be accessed which gives us 

an indication of the utility of the features. Figure 14, Figure 19 and Figure 20 show how 

strongly each of the variables is weighted in a test run. When the model is trained on the 

target variable it dominates the weighting compared to when the target variable is 

excluded.   
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Figure 13 Sliding windows with different parameters 

3.5.5 Model Training and Evaluation 

Figure 14 shows the full workflow used to meet the objectives discussed in 3.1. The 

training workflow has been constructed to be versatile and adaptable, so different types of 

tests can be run with minimal overhead. This workflow describes the implementation of 

the main() function in the model_training_loop.py file found here. Figure 15 

describes the evaluation workflow for which different parts of the workflow are 

implemented in the following Jupyter notebooks: 

• Multivariate performance 

• Multivariate anomaly detection 

• Univariate performance 

• Univariate anomaly detection 

 

https://github.com/carrowmw/mres-project/blob/main/analysis_files/model_training_loop.py
https://github.com/carrowmw/mres-project/blob/main/analysis_files/4_Performance_Evaluator_MM.ipynb
https://github.com/carrowmw/mres-project/blob/main/analysis_files/4_Anomaly_Detection_MM.ipynb
https://github.com/carrowmw/mres-project/blob/main/analysis_files/4_Performance_Evaluator_UV.ipynb
https://github.com/carrowmw/mres-project/blob/main/analysis_files/4_Anomaly_Detection_UV.ipynb
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Figure 14 Overview of modelling workflow 



Carrow Morris-Wiltshire           MRes Dissertation 

  41 

 

 

 

Figure 15 Overview of evaluation workflow 
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3.5.6 Anomaly Detection 

The first objective involves anomaly detection which necessitate a separate 

workflow. The first task in anomaly detection is defining what is meant by an anomaly in 

this context. In time-series analysis they can be broadly categorises into two types - the 

first is outlier, which are values that are located outside the normal class. The second is 

an anomalous behavior, which is a periodic collapsing phenomenon in time series. For 

this project there are two problems to investigate. The first is detecting data gaps that 

arise from incomplete data. When the COMPLETENESS_THRESHOLD parameter is set 

to 1 the model should not detect any anomalies of this type. However, when gaps are 

introduced by reducing the COMPLETENESS_THRESHOLD, it is likely that the model will 

struggle make a prediction across the gap as this is equivalent to setting the HORIZON 

parameter to the length of the gap. Gaps of this type would be classed as a periodic 

collapsing phenomenon as the the sequence might jump from values expected at midday 

to values expected at midnight in the sequence.  

Table 9 shows two consecutive days in December. The Monday sequence satisfies 

COMPLETENESS_THRESHOLD=1. The Tuesday sequence does not satisfy the 

threshold. On the Monday it is evident that the value for pedestrian count changes 

gradually at each subsequent 15-minute time period. On the Tuesday the changes are 

less gradual. It is not clear if the values seen in the second half of the Tuesday sequence 

are the sum of the recorded pedestrians since the previous recording or if they are 

coincidentally very high around the time that the sensor stopped recording properly. In the 

case that there is a genuine value of 2927 in the 15 minutes period before 16:00 then this 

value can be considered an outlier, otherwise it is an example of collapsing phenomena.  

Table 9 Outliers 

Monday 2021-12-27 Tuesday 2021-12-28 

hour-minutes value hour-minutes value 

12:30 707 12:45 445 
12:45 827 13:00 613 
13:00 892 13:15 544 

13:15 1050 14:00 2201 

13:30 988 16:00 2927 

13:45 1167 17:00 1867 
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14:00 926 19:00 685 

14:15 948 22:00 132 

14:30 988 23:00 52 

 

Table two shows more clearly an example of periodic collapsing phenomena from 

two Saturdays in October 2022.  

Table 10 Periodic collapsing phenomena 

Saturday 2022-10-01 Saturday 2022-10-22 

hour-minutes value hour-minutes value 
10:00 217 10:00 183 
10:15 248 10:15 160 
10:30 273 10:30 1 
10:45 358 10:45 3 
11:00 286 11:00 1 
11:15 393 11:15 2 
11:30 305 11:30 1 
11:45 295 11:45 1 
12:00 256 12:30 4 
12:15 217 13:15 428 

 

In the case of Table 9 it is relatively easy identify genuine outliers like this using 

percentiles. However, identifying the patterns shown in Table 10 is more of a challenge. 

The reasons for can be seen in Figure 16. It would be conceivable to consider any value 

above 1000 people per 15-minutes an outlier, but as the flow values approximately follow 

a Poisson distribution with lambda ~ 1, it is not possible to use the lower percentiles. 

Instead, a method is proposed using the predictions from the trained models to calculate 

the errors for each data point and defining a threshold of standard deviation from the 

mean error: 

Equation 3 Anomaly Classification 

𝑒𝑟𝑟𝑜𝑟𝑠⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑡𝑎𝑟𝑔𝑒𝑡𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑒𝑟𝑟𝑜𝑟 + 𝜎𝑒𝑟𝑟𝑜𝑟 ∗ 𝐸𝑅𝑅𝑂𝑅_𝐷𝐸𝑉 

𝑎𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑒𝑟𝑟𝑜𝑟𝑠⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Where 𝐸𝑅𝑅𝑂𝑅_𝐷𝐸𝑉 is a hyperparameter constant defined in Table 8. This value will 

have to be empirically derived.  
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Figure 16 Histogram of flow rate for East and West sensors 

 

3.5.7 Horizon Evaluation 

For the evaluation on the effect of multivariate/univariate and linear/LSTM on the 

prediction accuracy of the HORIZON values, a variety of evaluation metrics will be 

compared. The evaluation metrics can be seen in section 3.5.10. Following the same 

workflow described in 3.5.2 the error metrics for each model will be compared for the 

HORIZON values shown in Table 8.  

3.5.8 Data robustness test 

The data robustness test will involve comparing the error metrics of each of the 

models at the different values for COMPLETENESS_THRESHOLD. This will follow the 

same workflow described in 3.5.2 and the error for each test will be compared for each of 

the COMPLETENESS_THRESHOLD values shown in Table 8. The 

SEQUENCE_LENGTH hyperparameter comes in here, as it allows like for like 

comparison at specified COMPLETENESS_THRESHOLD values.  
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3.5.9 Cross-validation 

To ensure stability in the model a train-test split of 80-20 has been used. As there 

are data sequences from different parts of the year that the model has not been trained or 

tested on (this always uses the longest available sequence for each completeness 

threshold), the second longest sequence can be used. For the first objective, the longest 

sequence at 50% completeness is used for cross-validation. This is appropriate because 

the models are trained on completeness thresholds between 80% and 100% 

completeness which yield different sequences to the sequence found at 50%. The second 

and third objective do not use cross-validation and only the results from training are 

shown.  

3.5.10 Model Evaluation 

A variety of evaluation metrics have been calculated to assess the performance of 

the models. These have been chosen based on the literature and each tells us something 

unique about the model error.  

Mean absolute error (MAE): this is the average absolute difference between the 

prediction and target values.  

Root mean squared error (RMSE): this is the square root of MSE, so the effect of 

each error on the average result is proportional to the size of the squared error yielding 

the same sensitivity to larger errors as MSE but can be more easily compared with MAE.  

Coefficient of determination (R2): measures the proportion of the variance for the 

prediction values that are explained by the input values, i.e., it provides a measure of how 

well future samples are likely to be predicted by the model.  
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4 RESULTS 

The results section will cover the results derived from the methods for each of the 

objectives that are shown in 3.1. The results section is split into four subsections. The first 

subsection shows an overview of the univariate and multivariate approaches (for a more 

in-depth view see 3.5). The second subsection shows the results of the tests involving 

anomaly prediction (objective 1). The third subsection looks at the effect of prediction 

horizon on prediction accuracy (objective 2), and the fourth subsection covers tests 

concerning the robustness of the raw data (objective 3).  

4.1 Workflow Overview 

In the methodology, two models (LSTM and linear) were introduced, with each 

following a univariate and multivariate workflow.  

4.1.1 Overview – Univariate Models 

Figure 17 shows three example windows a model may be trained on. As this is a 

univariate model, the input is a sequence of pedestrian flow values, and the target is the 

pedestrian flow value a horizon length of time-steps further on from the end of the input 

sequence (in the case of Figure 17 six time-steps futher). This means that the model is 

trying to predict an hour and a half into the future, using the forty-eight previous 

observations.  
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Figure 17 Univariate Input Window, Target, and Prediction 

4.1.2 Overview – Multivariate Models 

Here the input variables for the multivariate model can be seen for three randomly 

sampled windows (Figure 18). It is worth noting the sine functions calculate the values for 

each hour (4-time steps). In the future, although slightly more computationally expensive, 
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it would be worth smoothing these to get a one-to-one relationship between sine value 

and timestep.  

 

Figure 18 Multivariate Input Window, Target, and Predictions 

 

4.1.3 Linear Model Training 

The models are trained for a number of epochs. Figure 19 and Figure 20 show the 

variable weightings of the linear model if it is trained for 1000 epochs. Figure 19 shows the 
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weightings if all 11 inputs variables are used for predicting the target variable (pedestrian 

count) and it shows a strong weighting on the target variable Figure 20. If the target 

variable is excluded from the input variables, it shows the relative weightings of added 

variables. The weightings for university term times appear to be unstable however and 

oscillate significantly between epochs. The weight values for the periodicity features seem 

stable through multiple epochs. It is interesting to note the amount of weight placed on the 

feature with a 1/quarter frequency, as this was not a powerful signal in the frequency 

analysis (see 3.4.4). This could however be an artifact of the modelling workflow. 

Figure 19 Linear model weights (target variable 
included for training) 

Figure 20 Linear model weights (target variable 
excluded from training) 

 

4.2 Anomaly prediction test 

The anomaly prediction results come from the evaluation workflow (shown in 3.5.5). 

There are two objectives for this test. The first objective is to identify anomalies using 

single-step univariate prediction. This objective is important to measure because the 

feature engineering required for multivariate models requires time and resources. The 

second objective follows the same process as the first but with the multivariate model 

(input features are increased from 1 to 11).  
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When testing the model on an unseen data an interesting pattern emerges. To 

demonstrate, a selection of models with HORIZON=6 is shown. This equates to an hour 

and a half which for practical applications like crowd control seems like a reasonable 

compromise between the amount of needed to coordinate a response and prediction 

accuracy (which decreases as horizon time increases).  

The models presented here, are validated on a data set that has been loaded with a 

completeness threshold of 50% (much lower than the threshold for training). For both 

objectives in this section, the window size for the LSTM models has been kept at 48 for 

consistency.  

4.2.1 Test Objective 1 

Objective 1: Create a modelling workflow that identifies anomalies in the data using single-step 

univariate prediction validating on unseen data. 

Figure 21 shows the error between each prediction and target for a particular model 

and for a portion of the validation data. For the univariate models it seems that both the 

LSTM and linear models perform similarly.  
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Figure 21 Targets v Predictions for a Segment of the Validation Data – Univariate 

 

Figure 22 shows a portion of the validation sequence that contains a short sequence 

of contextual anomalies for the univariate linear model. It is evident that the linear model 

has not identified the anomalies correctly. It appears that the model once fed the first 

window sequence containing an anomalous data point, significantly reduces its 

subsequent prediction. This means that when when the real data returns to its expected 

behaviour, that there is lag equal to the horizon length of the model before it will stop 



Carrow Morris-Wiltshire           MRes Dissertation 

  52 

 

predicting anomalies. It can be seen in Figure 22 that the identified anomaly is not actually 

an anomaly whereas the previous six targets are genuine contextual anomalies (with 

scaled values of approximately -0.8 during the expected midday peak). Because the 

model updated its prediction based on the most recent input window, when the targets 

suddenly return to normal behaviour, the new value is beyond the anomaly threshold. The 

linear model when trained only on the input variable appears to largely adopt a strategy of 

taking the last value of the input sequence and recycling it as the predicted value.  

 

Figure 22 Sample Anomaly Predictions – Univariate Linear 

Figure 23 shows the results of model 209 which used a 

COMPLETENESS_THRESHOLD=0.98 during training. This model has correctly identified 

all the anomalies, but the model still experiences the same problem as above, when the 
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values return to normal behaviour they are still being labelled as anomalies for a couple of 

time-steps. This suggests that the model is not generalising enough and instead 

appearing to  be very reliant on the values in the previous input window.  

 

Figure 23 Sample Anomaly Predictions - Univariate LSTM 

Figure 24 shows how the percentage of the targets identified as anomalies changes 

as the ERROR_DEV threshold changes. Both models follow a similar pattern, but the 

linear model reaches 0% anomalies at a lower threshold. 
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Figure 24 Percentage Anomalies Detected for Values of ERROR_DEV – Univariate 

4.2.2 Test Objective 2 

Objective 2: Create a modelling workflow that identifies anomalies in the data using single-step 

multivariate prediction validating on unseen data.  

Figure 25 shows the error between predictions and targets for both the multivariate 

LSTM and linear models for a section of the validation set. A significant performance 

improvement is seen across multivariate results compared to that of the univariate results 

in term of MAE, RMSE and R2 (see 9.2.1 and 9.2.2 of the appendix). However, the 

multivariate LSTM appears to predict a lot of noise of noise during the nightly flows. This 

is possibly a result of undertraining. The models are only trained for 20 epochs, which 

even for models with the longest data sequences takes less than 10 minutes on a laptop 

CPU.  
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Figure 25 Targets v Predictions for a Segment of the Validation Data-  Multivariate 

Figure 26 and Figure 27 show the predicted anomalies for the multivariate linear and 

LSTM models. For the multivariate linear model, the same issue can be from the 

univariate LSTM, with anomalies still being labelled after the sequence returns to normal. 

However, by including the engineered features the model is no longer recycling the last 

value from the input sequence as the prediction.  
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Whilst the anomalies are correctly predicted for the LSTM, it appears the LSTM 

model is over reliant on the periodicity features. Because the periodicity features give a 

relatively accurate prediction, and the learning rate (LR) for models was set quite high at 

0.1 (using a step function to decrease the LR as it trains), it is possible that the LR is not 

low enough to capture the nuances in the target data during training. Running the model 

for more epochs would help to understand this problem further.  It is also possible that 

because the model still has the same number of neurons in the hidden layer as the 

univariate model, but has an order of magnitude more input features, that more 

parameters are needed to capture the more complex patterns in the data.  
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Figure 26 Sample Anomaly Predictions - Multivariate Linear 
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Figure 27 Sample Anomaly Predictions - Multivariate LSTM 

Figure 28 show what percentage of the validation data are labelled as anomalies for 

each value of ERROR_DEV. The most interesting point to note is that the anomaly 

percentage never reaches 0 for the LSTM even at an anomaly threshold of ten times the 

standard deviation of errors. This could be a useful metric in the future for 

programmatically determining the success of a model at identifying contextual anomalies. 

Put another way, higher the ERROR_DEV value, the more confident the model is that the 

anomaly label is correct. 
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Figure 28 Percentage Anomalies Detected for Values of ERROR_DEV – Multivariate 

Table 11 below shows the results for both univariate and multivariate LSTM models 

for window size 48 and horizon 6. Each have been labelled according to whether they 

correctly predicted the sequence of anomalies shown above.  

What is interesting to note in Table 11 is that the correct anomaly locations in the 

sample period are only identified when the model is trained on 0.98 completeness 

(ignoring latent predictions). Why is this? The most likely reason is that the data with lower 

completeness thresholds used to train the models, contain many anomalies that are 

artefacts of the data pre-processing. For example, the sudden jumps on the second and 

third cycles that might have arisen as a result of jumping two or more time periods in one 

timestep. To test this would require checking the timesteps against the expected time 

periods to highlight the data gaps. The model will likely generalise better on the data with 

longer sequence lengths, but because there are more anomalies the model’s predictions 

are likely to be less accurate as the presence of anomalies increase the uncertainty of the 

model. The question here is whether the model is overgeneralising as result of the 

presence of anomalies. There is a pattern in the number of standard deviations σ in the 

anomaly threshold is lower in the 98% completeness model numbers which is effectively 
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the cut-off point for what is considered an anomaly from the MAE. Higher MAE and a 

higher anomaly threshold would almost certainly lead to poorer model performance. This 

means that the model is making more conservative predictions so the error is higher 

meaning the error deviations would likely cover a larger range relative to models with 

lower MAE. By running the evaluation again in with an error deviation of 5 as the cut-off 

for anomalies it might be possible to see if the models perform any better.  

The sample identification column shows quite clearly the effect of data quality on the 

ability to predict anomalies. However, it is also evident that the models trained on the high 

completeness thresholds have the ability to recognise anomalies in the incomplete data. It 

is expected that as the completeness threshold goes down (remember the completeness 

threshold c refers to each day not to each sequence and the sequence of length n days 

each containing at least a factor of c of the expected data). Because of this the overall 

completeness of a sequence of length n can always be expected to be greater than or 

equal to the completeness threshold. 

Table 11 Results from Anomaly Evaluation for LSTM at HORIZON=6 

Model Model 
Number 

Completeness Sequence 
Length 

Horizon Window 
Size 

MAE Percentage 
Anomalies 

(%) 

Anomaly 
Threshold 

(𝜎) 

Correctly 
Identified? 

Univariate LSTM 125 0.98 694 6 48 0.29 0.15 2.30 Y 

Univariate LSTM 153 0.98 1388 6 48 0.28 0.10 2.40 Y 

Univariate LSTM 181 0.98 2082 6 48 0.32 0.16 2.60 Y 

Univariate LSTM 209 0.98 2776 6 48 0.27 0.12 2.40 Y 

Univariate LSTM 237 0.98 3470 6 48 0.30 0.12 2.30 Y 

Univariate LSTM 265 0.96 1288 6 48 0.29 0.04 2.60 N 

Univariate LSTM 293 0.96 2576 6 48 0.45 0.00 3.40 N 

Univariate LSTM 321 0.96 3864 6 48 0.33 0.00 3.00 N 

Univariate LSTM 349 0.96 5152 6 48 0.36 0.63 3.60 N 

Univariate LSTM 377 0.96 6440 6 48 0.32 0.09 2.70 N 

Univariate LSTM 405 0.94 1810 6 48 0.28 0.00 2.50 N 

Univariate LSTM 433 0.94 3620 6 48 0.29 0.00 2.40 N 

Univariate LSTM 461 0.94 5430 6 48 0.32 0.35 2.80 N 

Univariate LSTM 489 0.94 7240 6 48 0.30 0.04 2.60 N 

Univariate LSTM 517 0.94 9050 6 48 0.38 0.03 2.80 N 

Multivariate LSTM 160 0.98 694 6 48 0.31 0.147 2.5 Y 

Multivariate LSTM 195 0.98 1388 6 48 0.35 0.147 2.6 Y 

Multivariate LSTM 230 0.98 2082 6 48 0.35 0.074 2.8 Y 

Multivariate LSTM 265 0.98 2776 6 48 0.38 0.000 3.1 N 

Multivariate LSTM 300 0.98 3470 6 48 0.39 0.000 3.1 N 

Multivariate LSTM 335 0.96 1288 6 48 0.28 0.015 2.3 N 

Multivariate LSTM 370 0.96 2576 6 48 0.28 0.088 2.5 N 

Multivariate LSTM 405 0.96 3864 6 48 0.33 0.074 3.1 N 

Multivariate LSTM 440 0.96 5152 6 48 0.26 0.088 2.2 N 

Multivariate LSTM 475 0.96 6440 6 48 0.32 0.044 2.6 N 
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Multivariate LSTM 510 0.94 1810 6 48 0.39 0.088 3.4 N 

Multivariate LSTM 545 0.94 3620 6 48 0.30 0.147 2.6 N 

Multivariate LSTM 580 0.94 5430 6 48 0.28 0.147 2.3 N 

Multivariate LSTM 615 0.94 7240 6 48 0.33 0.029 2.4 N 

Multivariate LSTM 650 0.94 9050 6 48 0.38 0.279 3.8 N 

4.3 Horizon Prediction Test 

For this test an additional set of completeness values are being used. This is so that 

it is possible to see the effect of training on less complete data than for the previous 

section. 

4.3.1 Test Objective 3 

Objective 3: Use both univariate and multivariate workflows to measure the decrease in 

prediction accuracy as the prediction horizon increases. 

Figure 29 and Figure 30 show the variation in MAE for different horizon lengths. The 

linear model has very little interquartile range variance, which suggests what the model is 

learning does not change for the different SEQUENCE_LENGTH multipliers.  
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Figure 29 Horizon Length and MAE for Univariate Linear 

The univariate LSTM performs slightly better than the linear model, but not 

significantly better. MAE becomes quite high as the completeness values are reduced. A 

much higher interquartile range is shown and this likely due to the range of 

WINDOW_SIZE values that the LSTM uses.  
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Figure 30 Horizon Length and MAE for Univariate LSTM 

Figure 31 and Figure 32 show the effect of HORIZON on the MAE for the 

multivariate models. For the LSTM results, it can be seen that HORIZON appears to be 

highly correlated with MAE, as the interquartile range for each horizon value shown in the 

violin plot is low but varies significantly between horizon values. The same goes for 

completeness, as the interquartile ranges are very different between each of the subplots. 

It is evident that the LSTM performs much better than the linear model. 
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Figure 31 Horizon Length and MAE for Multivariate Linear 

Figure 32 shows the multivariate LSTM. Compared to the univariate LSTM the MAE 

values are much lower and the interquartile range is much shorter. This shows that the 

engineered features significantly help the model to train. 
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Figure 32 Horizon Length and MAE for Multivariate LSTM 

4.4 Data Robustness Test 

4.4.1 Test Objective 4 

Objective 4: Compare the prediction accuracy for different completeness thresholds for 

the univariate and multivariate workflow. 

From  Figure 33 and Figure 34 it is clear that the 100% completeness thresholds 

result in the most accurate models for smallest HORIZON values. However, for the largest 

HORIZON values the opposite is true and the accuracy increases down to a 
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completeness of 90%. Figure 34 shows that this is no longer the case at 80% 

completeness. There is a good chance that the high performance seen at 100% 

completeness, results from the models over training on the shorter input sequences.  

 

Figure 33 Mean Absolute Error – All Univariate Models – 94%-100% Completeness Threshold 
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Figure 34 Mean Absolute Error – All Univariate LSTM Models – 80%-100% Completeness Threshold 

Figure 35 below shows the performance for all of the multivariate models. The 

results show that the performance of all the models highest at the 100% completeness 

threshold. Again, there is a good possibility this is a result of the model overtraining on the 

short sequence lengths. What is interesting is that at the lower completeness threshold, 

the predictions return to the same level at around 96%. This is the point at which the 

sequence lengths reach about 2000 consecutive time-step. What this suggests is that by 
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adding the periodicity features, the model can take in more low-quality data, without 

compromising the prediction accuracy. 

 

Figure 35 Mean Absolute Error – All Multivariate Models – 94%-100% Completeness Threshold 
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If this is compared to another test run with lower completeness thresholds, the MAE 

is still low (relative to the univariate results). A significant drop in the MAE of the largest 

HORIZON values at 80%  completeness is evident.  

 

Figure 36 Mean Absolute Error – All Multivariate Models – 80%-100% Completeness Threshold 
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4.5 Summary of Results 

From the analysis of the results, it is evident that data quality has a significant 

impact on the quality of the results. 1310 model states were created in the training phase 

and each of these model states was then subjected to several analysis runs. The main 

findings from the three research objectives are as follows:  

• It is unlikely that a univariate modelling approach would deliver the required 

results due to the quality of the data.  

• By including periodicity features in the input data much lower MAE can be 

achieved for tests involving incomplete data. 

• The effect of prediction horizon on the MAE is substantially lower for the 

multivariate models than for the univariate models. 

• Whilst the multivariate models had lower MAE across, they were not 

significantly better at detecting anomalies. This is, however, likely a result of 

undertraining.  

• The results of the multivariate anomaly showed promise in avoiding the 

continued labelling of anomalies after behaviour had returned to normal.  
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5 DISCUSSION 

This dissertation has presented some ideas around anomaly prediction in pedestrian 

data and the effect of data quality on a model’s ability to make accurate predictions. In this 

section, the implications of the findings will be discussed, relating them back to the 

dissertation background and literature review. The first section will be focussed on 

discussing the current state of the workflow developed in this project and the point that 

future work can build from. The next section will broaden out to discussing the implications 

of this project for large scale urban data repositories like the urban observatory. The third 

and fourth sections will discuss limitations and future work respectively.  

5.1 Current State 

Generating accurate predictive models for time-series data is often a time-

consuming process. The machine learning approach requires a hyperparameter 

optimisation process which often requires testing a lot of different hyperparameter 

combinations. This work has gone some way in developing a method of rapidly testing 

models for performance. Whilst this project adopted a computationally intensive brute 

force approach to hyperparameter tuning, the results from this prototype can be used to 

significantly reduce the search space for hyperparameters on future models. Additionally 

here are a number of existing methods in the field of time-series forecasting for efficient 

hyperparameter optimisation that can be incorporated to further improve the model 

performance (Wu et al., 2022).  

The preprocessing methods and model training/evaluation workflows have been 

designed as a dynamic module suitable for any pedestrian sensor in the Urban 

Observatory and can be easily adapted to include different model architectures. Once a 

suitable model has been selected during subsequent work, the preprocessing and 

modelling workflows can be deployed to the cloud with minimal adaptation.  The results of 
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this project are not dissimilar to the extensive work conducted by (Munir et al., 2018) on 

unsupervised anomaly detection in time-series. Their DeepAnT model - which has been 

tested on a number of benchmark time-series - found that minor data contamination (<5%) 

could be handled.  

5.2 Data for AI 

This section will discuss the quality of data needed to get high quality results from 

‘out of the box’ predictive machine learning models. It is evident from the literature that 

high quality data is necessary to effectively train machine learning models. It is therefore 

an important step in any machine learning pipeline to clean the data beforehand. There is 

an incentive here for open data providers to utilise the anomaly detection algorithms 

highlighted above to clean their data at the source to offer a more easily deployable 

product.  

The idea is that the data can be taken straight from the source such as from the 

urban observatory databases in the cities around the UK so that simple machine learning 

models can be trained and developed quickly for a range of different purposes. The 

models should be applicable to a variety of different time-series data sources for anomaly 

detection, such as from air pollution or hydrological sensors.  

As highlighted by James et al. (2022) the following areas that could be targeted to 

support the creation and upkeep of large sensor networks like that of the urban 

observatory: 

1. Parameterise and validate new models and digital twins for city systems, 

including transportation, utilities, and public services. 

2. Generate data for advanced analytics, using stochastic methods and AI 

algorithms. 

3. Offer robust evidence to support city planning and infrastructure 

development. 
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4. Facilitate ongoing analysis of the impact of policy and infrastructure 

interventions, capturing both intended and unintended consequences. 

5. Automate reporting and regulatory compliance processes. 

6. Monitor subtle and long-term changes in city systems via data mining 

techniques. 

7. Enable digital playback capabilities to dissect system failures and anomalies. 

8. Support agile, data-centric decision-making through the real-time availability 

of data. 

James et al. (2022) notes the technical challenges associated with reaching these 

goals, including the difficulties in creating reliable data for AI. To realise the goal of 

decentralised monitoring and management of urban systems - that is crucial for reasons 

of resilience, scalability, security, and trust (Townsend, 2013) - the data providers need to 

provide data that is easy to use for third party users like resource-constrained city 

councils. Without data that is immediately fit for purpose, creating bespoke solutions to the 

target areas listed above, becomes impractical and preprocessing work is duplicated 

between third party data users.  

In summary the systems of systems approach that predicates a decentralised 

‘polyopticon’ design of urban artificial intelligences (Sherman, 2022) requires a sturdy 

foundation of reliable data upon which to be built.  

5.3 Limitations 

There are a number of limitations in methods and implementation of this project. The 

most important are listed as follows: 

• The multivariate models were trained for the same number of epochs as the 

univariate models despite having far more data to train on. The results show 

indications that some of the multivariate models are underfitting as a result. 
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• The workflows for the second and third objectives were not subjected to 

cross-validation. This is problematic as there is evidence of overfitting as a 

result of too many parameters in the model (for the complexity of the data). 

• The models for multivariate and univariate workflows appear to be overfitting 

on the shorter sequences that are generated when the completeness 

threshold is at 100%.  

• Whilst the workflows have been designed with other sensors in mind, they 

have not been tested on other sensors. Future testing may throw up 

additional problems, especially for sensors with significantly less data than 

the one used in this study. 

• It is not clear whether the periodicity found in the data used in this study will 

be present in other data sets. An absence of strong signals may limit the 

effectiveness of using multivariate modelling approaches. 

• This project was constrained by time, and compute resources, meaning only 

simple models could be trained for a limited number of epochs. There is vast 

quantity of training data, graphs, validation metrics that require further 

analysis. 

• This is the authors first attempt at building an end-to-end machine learning 

pipeline. As a result, and there is a good chance some errors have been 

overlooked in the methodology. 

• Despite the results showing that the multivariate models performed better in 

this test, it may be that by using a larger model (more trainable parameters) 

it is able to capture the periodicity without having them explicitly inputted.  

5.4 Future Work 

Based on the limitations highlighted above, there are a significant number of directions 

that this work can be taken in the future. These can be split into three groups. The first is 

those involving further tests using the workflow developed in this dissertation, the second 

group is bringing in additional models and anomaly detection algorithms to improve the 

workflow, and the third group involves deployment of the tools developed.  
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5.4.1 Testing 

• Add more periodicity features. Despite the weekly cycle not appearing as a 

signal in the LSP analysis, it should give context to the model as to where it 

is trying to predict in the weekly cycle.  

• Add time-based features to account for longer term trends in the data. This 

iteration of work did not include these, but they are suggested in the 

forecasting literature (Hyndman and Athanasopoulos, 2018).  

• Spatial performance – how do the models perform when evaluated on data 

from the western sensor? What about another sensor further down the 

street? When applied to anomaly detection this would allow another type of 

outlier to be identified. Collective outliers are those that are anomalous to the 

wider set of data. In this case the wider set of data could be the data from 

other sensors nearby. Collective outliers occur may occur within the normal 

range and context for a particular time series, but when combined with other 

time series, anomalous behaviour is evident.  

5.4.2 Development 

• Following the similar work of (Pasini et al., 2022), develop an anomaly score 

to indicate the likelihood that a record or sequence of records are 

anomalous.  

• Implement an existing anomaly detection framework like DeepAnT (Munir et 

al., 2018) to compare to the methods developed in this dissertation.  

• Multi-dimensional clustering of performance metrics – in order to identify the 

best hyperparameters for a model we can run an hyperparameter 

optimisation similar to the functionality created in this project, but that 

clusters the hyperparameter values according to post evaluation 
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performance. The objective here will be for the program to arrive at an 

effective set of hyperparameter values, given only a time-series as an input. 

A neural layer would then learn from the matrix of hyperparameter values 

adapt it feeding back into the hyperparameter matrix for training future 

models. This could build on the work of Lee et al. (2021) who focus on 

building a self-adaptive lightweight anomaly detection model for real-time 

recurrent time series using a simple LSTM. 

• Different model architecture – it would be useful to know what the limits on 

increasing model size are on performance. One option is to use an LSTM 

with more layers, or one with an encoder, decoder architecture . 

Transformers have recently surpassed benchmarks in an extraordinary 

number of fields - including time-series analysis - and offer another avenue 

of research. 

5.4.3 Deployment 

• Deploying the workflow onto the cloud would allow the streaming data to be 

labelled in real-time which would serve as the foundation for delivering the 

level of predictive analytics needed to achieve situational awareness.  

• Reaching out to private and public sector partners to gain a further 

understanding of local use cases, particularly in Newcastle upon Tyne, could 

also help to build momentum and highlight the value of large sensor 

networks. 
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6 CONCLUSION 

In conclusion, this work has provided an exploration of anomaly prediction within 

pedestrian data and its interplay with data quality's influence on model precision. An 

investigation covering 1310 model states was undertaken. Key findings and narratives 

from distinct test objectives have been derived, providing essential insights that 

reverberate against the backdrop of the dissertation' foundational premise and existing 

literature.  

This research has helped to highlight some of the issues present in the raw data 

from urban observatories. The recommendations serve as a roadmap to unsupervised 

anomaly detection for urban observatories. Whilst the models generated in this research 

are by no means groundbreaking in terms of their prediction accuracy and anomaly 

detection, they serve as a prototype for developing such a model. This work also 

highlights the complexity of labelling anomalies in pedestrian data.  

The discussion underscores the pivotal role of data quality in attaining robust 

predictive machine learning outcomes, elucidating the need for data cleansing prior to 

model deployment. The proposition to integrate anomaly detection algorithms for data 

refinement at the source not only expedites model development but also serves as a 

pragmatic step for data providers to offer enhanced deployability. Furthermore, this study 

sheds light on the requirement of high-quality data for training simplistic yet effective 

predictive models.  

There are several future research avenues that have emerged, including further 

testing of data and the removal impact on training sets, spatial performance evaluations, 

and multidimensional clustering of performance metrics. This envisioned trajectory stands 

to enrich the field of anomaly detection, capitalising on self-adaptive methodologies and 

diverse model architectures, such as transformers, to foster further advancements. 
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8 GLOSSARY 

8.1 Time-Series Analysis 

8.1.1 Indexing 

The process of identifying and assigning identifiers to time series data in a 

database, aiding in rapid data retrieval. It involves using a measure of similarity or 

dissimilarity 𝐷(𝑄, 𝐶) between a query time series 𝑄 and the time series in the database 

𝐷𝐵 (Faloutsos et al., 1994). 

8.1.2 Clustering 

The process of grouping time series data based on similarity. This often involves 

using a measure of similarity or dissimilarity 𝐷(𝑄, 𝐶)  to identify and group related time 

series data in a database 𝐷𝐵 (Kalpakis et al., 2001). 

8.1.3 Classification 

The process of assigning an unlabelled time series 𝑄 to one of two or more 

predefined classes based on certain characteristics or patterns in the data (Geurts, 2001). 

8.1.4 Anomaly Detection 

The process of identifying anomalies or deviations from a defined “normal” behavior 

within a given time series 𝑄. This often involves the use of models that define normal 

behavior and algorithms that detect deviations from these models (Dasgupta and Forrest, 

1996). 
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8.2 Machine Learning 

8.2.1 Hyperparameter 

Hyperparameters are parameters whose values are set prior to the commencement 

of the learning process. Unlike other parameters, hyperparameters are not learned directly 

from the training data. They often need to be specified manually and can significantly 

impact the performance of a model (Bergstra and Bengio, 2012). 

8.2.2 RF (Random Forest) 

RF is a machine learning technique that builds multiple decision trees and merges 

them together to get more accurate and stable predictions. The principle behind the RF 

algorithm is that a group of "weak learners" can come together to form a "strong learner". 

Each tree in the random forest is built from a sample drawn with replacement (i.e., a 

bootstrap sample) from the training set. Also, when splitting a node during the 

construction of the tree, the split is chosen from a random subset of the features, which 

makes the forest robust against overfitting. RF is widely used for both classification and 

regression tasks (Breiman, 2001). 

8.2.3 Activation Functions 

A critical component of artificial neural networks that introduce non-linear properties 

into the network's mapping from input to output. By doing so, they enable the network to 

learn and represent more complex patterns in the data. Activation functions range from 

simple binary step functions to more complex functions like sigmoid, hyperbolic tangent 

(tanh), Rectified Linear Unit (ReLU), and others. The choice of activation function can 

significantly affect the network's training process and final performance. One of the critical 

roles of an activation function is to limit the output of the neurons, adding an element of 

normalization within the network (Goodfellow et al., 2016). 
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8.2.4 ANN (Artificial Neural Network) 

ANNs are computational models inspired by biological neural networks and form the 

backbone of modern machine learning. These networks consist of interconnected layers 

of nodes or "neurons" that transmit and transform information from the input to the output 

layer. Each node takes a weighted sum of its inputs, applies an activation function, and 

sends the result to nodes in the next layer. The weights are learned through a process 

called backpropagation, where the network adjusts its weights to minimize the difference 

between the actual and predicted outputs. ANNs can approximate complex functions and 

are widely used for tasks like classification, regression, and clustering (Goodfellow et al., 

2016). 

8.2.5 CNN (convolution neural network) 

CNNs are a category of artificial neural networks specially designed to process grid-

like data such as images. They consist of one or more convolutional layers, often followed 

by pooling layers, and then fully connected layers as in a traditional neural network. The 

key feature of CNNs is their ability to preserve the spatial structure of the data. The 

convolution operation allows CNNs to automatically and adaptively learn spatial 

hierarchies of features, which makes them highly successful in tasks where there is a 

need to identify spatial patterns in high-dimensional data (LeCun et al., 1998). 

8.2.6 RNN (Recurrent Neural Network) 

RNNs are a type of neural networks specifically designed to handle sequential data. 

They operate by passing information from one step in the sequence to the next, creating a 

form of internal memory. Each timestep's hidden state is computed using the current input 

and the previous timestep's hidden state, allowing the network to capture temporal 

dependencies in the data. However, RNNs struggle with learning long-term dependencies 

due to the vanishing and exploding gradient problem (Elman, 1990). 
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Figure 37 RNN Architecture 

8.2.7 LSTM (long short-term memory) 

A variant of RNNs, LSTMs process sequential data by leveraging a current data 

point and the previous timestep's hidden state. The LSTM model's novelty lies in its cell 

state, a structure allowing information to flow with minimal transformation (𝑐𝑡−1 and 𝑐𝑡 in 

Figure 38). This cell state is modulated via gates, mechanisms that control information 

flow through sigmoid functions and pointwise multiplication, dictating what proportion of 

the information should be retained or discarded (Hochreiter and Schmidhuber, 1997).  

 

Figure 38 LSTM unit 
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8.2.8 GRU (Gated Recurrent Unit) 

GRUs are a variation of RNNs designed to capture long-term dependencies more 

effectively. Similar to LSTMs, GRUs utilise gating mechanisms to control information flow 

across timesteps. However, GRUs simplify the LSTM model by using only two gates: an 

update gate, which determines how much information from the previous hidden state 

should be kept, and a reset gate, which controls how much of the past information should 

be forgotten. This design helps combat the vanishing gradient problem and enables the 

network to learn longer sequences, while often being more computationally efficient than 

LSTMs (Cho et al., 2014). 

8.2.9 GNN (Graph Neural Network) 

GNNs are a class of neural networks designed to operate over data structured as 

graphs. In GNNs, nodes aggregate information from their neighbours via message-

passing mechanisms, using learned functions to transform and combine this information. 

This iterative local aggregation allows GNNs to capture the complex relational structures 

present in graph data. However, while enabling learning on non-Euclidean data, the 

network's performance is contingent on the graph's structure, with poorly constructed 

graphs often leading to sub-optimal performance. GNNs are extensively used in such 

network analysis where data is naturally represented as graphs (Scarselli et al., 2008). 

  



Carrow Morris-Wiltshire           MRes Dissertation 

  91 

 

9 APPENDIX 

9.1 Methodology 

9.1.1 preprocess_data() 

def preprocess_data( 
    df: pd.DataFrame, 
    completeness_threshold: float, 
    frequency: str = None, 
    additional_features: list = None, 
    show_prints=True, 
    remove_dir=True, 
    daily_completeness=True, 
    consecutive_days=True, 
    term_dates=True, 
    periodicity=True, 
    scale=True, 
    resample=False, 
) -> dict: 
    """ 
    Preprocess a given time series dataframe based on various criteria and operations. 
 
    Parameters: 
    - df (pd.DataFrame): The input dataframe, expected to have a datetime index. 
    - completeness_threshold (float): Threshold for the data completeness. If data is below this  
    threshold, it may be dropped or processed accordingly. 
    - frequency (str, optional): Desired frequency for resampling the data. Defaults to None, implying  
    no resampling. 
    - additional_features (list, optional): List of additional features to be considered. Defaults to  
    None. 
    - show_prints (bool, optional): If True, shows print statements. Defaults to True. 
    - remove_dir (bool, optional): If True, removes the directionality from the data. Defaults to True. 
    - daily_completeness (bool, optional): If True, selects based on daily completeness threshold.  
    Defaults to True. 
    - consecutive_days (bool, optional): If True, selects data with a certain number of consecutive  
    days. Defaults to True. 
    - term_dates (bool, optional): If True, adds term dates information. Defaults to True. 
    - periodicity (bool, optional): If True, adds periodicity features to the data. Defaults to True. 
    - scale (bool, optional): If True, scales the data using a standard scaler. Defaults to True. 
    - resample (bool, optional): If True, resamples the data based on the provided frequency. Defaults  
    to False. 
 
    Returns: 
    - dict: A dictionary containing: 
      * "data": The preprocessed dataframe. 
      * "index": The index of the dataframe. 
      * "columns": The columns of the dataframe. 
 
    Example: 
    -------- 
    >>> data = pd.DataFrame(...) 
    >>> preprocessed = preprocess_data(data, completeness_threshold=0.8) 
 
    Notes: 
    ------ 
    - The dataframe is expected to have a datetime index. 
    - The function will modify the input dataframe based on the provided flags and thresholds. 
    """ 
    if remove_dir: 
        df = remove_directionality(df, additional_features) 
 
    if daily_completeness: 
        df = select_daily_completeness_threshold( 
            df, completeness_threshold, show_prints=show_prints 
        ) 
 
    if consecutive_days: 
        df = find_longest_sequence(df, completeness_threshold, show_prints=show_prints) 
 
    if term_dates: 
        df = add_term_dates(df) 
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    if periodicity: 
        df = add_periodicity_features(df) 
 
    if scale: 
        scaled_data = scale_data(df) 
 
    if resample: 
        df = resample_frequency(df, frequency) 
        return {"data": df, "index": df.index, "columns": df.columns} 
    else: 
        df.drop(columns=["date"], inplace=True) 
        return {"data": scaled_data, "index": df.index, "columns": df.columns} 

9.1.2 check_completeness_daily() 

def check_completeness_daily( 
    df: pd.DataFrame, 
    df_dayofyear: int, 
    df_year: int, 
    day_number: int, 
    days: int, 
    year: int, 
    completeness: float, 
) -> pd.DataFrame: 
    """ 
    Checks whether data completeness for each day in a given sequence meets a specified threshold. 
 
    Parameters: 
    ---------- 
    df (pd.DataFrame):  
        The dataframe containing the time series data. 
    df_dayofyear (pd.Series):  
        A series indicating the day of the year for each timestamp in the dataframe. 
    df_year (pd.Series):  
        A series indicating the year for each timestamp in the dataframe. 
    day_number (int):  
        The starting day of the sequence to be checked. 
    days (int):  
        The number of days in the sequence to be checked. 
    year (int):  
        The year of the sequence to be checked. 
    completeness (float):  
        The data completeness threshold (as a fraction of a full day's data). 
 
    Returns: 
    ---------- 
    bool: 
        True if the data completeness for each day in the sequence meets or exceeds the threshold; False 
otherwise. 
 
    Notes: 
    ------ 
    - The function assumes there are 24*4 = 96 data points for a full day (i.e., data at 15-minute 
intervals). 
    """ 
    for i in range(days): 
        ts_data = df[(df_dayofyear == day_number + i) & (df_year == year)] 
        if len(ts_data) < completeness * 24 * 4: 
            return False 
    return True 
 
 

9.1.3 find_longest_sequence() 

def find_longest_sequence( 
    df: pd.DataFrame, completeness: float, show_prints: bool = True 
) -> pd.DataFrame: 
    """ 
    Identifies the longest continuous sequence of days where data completeness meets the specified threshold. 
 
    Parameters: 
    ---------- 
    df (pd.DataFrame):  
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        The dataframe containing the time series data. 
    completeness (float):  
        The data completeness threshold. 
    show_prints (bool, optional):  
        If True, prints statements detailing the identified sequence. Default is True. 
 
    Returns: 
    ---------- 
    pd.DataFrame: 
        A dataframe containing the longest continuous sequence of days where data completeness meets the 
threshold.  
        If no such sequence is found, returns None. 
 
    Example: 
    -------- 
    >>> data = pd.DataFrame({...}, index=pd.date_range(...)) 
    >>> sequence = find_longest_sequence(data, 0.9) 
 
    Notes: 
    ------ 
    - The function uses the `check_completeness_daily` function to assess data completeness for each 
potential sequence. 
    - The dataframe should have a DatetimeIndex. 
    """ 
    df_dayofyear = df.index.to_series().dt.dayofyear 
    df_year = df.index.to_series().dt.year 
    unique_years = df_year.unique() 
 
    days = 0  # Initialize days counter 
    max_day_sequence_start = None  # Initialize starting day of max sequence 
    max_sequence_year = None  # Initialize year of max sequence 
 
    while True: 
        for year in unique_years: 
            min_day_number = df_dayofyear[df_year == year].min() 
            max_day_number = df_dayofyear[df_year == year].max() 
            # Check each possible sequence starting from each day of the year 
            for day_number in range(min_day_number, max_day_number - days + 1): 
                if check_completeness_daily( 
                    df, df_dayofyear, df_year, day_number, days, year, completeness 
                ): 
                    days += 1  # Increase the days counter 
                    max_day_sequence_start = ( 
                        day_number  # Update starting day of max sequence 
                    ) 
                    max_sequence_year = year  # Update year of max sequence 
                    break 
            else: 
                continue 
            break 
        else: 
            if days > 0: 
                sequence_df = df[ 
                    (df_dayofyear >= max_day_sequence_start) 
                    & (df_dayofyear < max_day_sequence_start + days) 
                    & (df_year == max_sequence_year) 
                ] 
                if show_prints: 
                    print(f"Maximum consecutive days: {days - 1}") 
                    print( 
                        f"Starting from day number {max_day_sequence_start} in {max_sequence_year}" 
                    ) 
                return sequence_df 
            else: 
                if show_prints: 
                    print("No consecutive days found.") 
                return None  # If no sequence was found, return None 
 

9.1.4 add_periodicity_features() 

def add_periodicity_features(df: pd.DataFrame) -> pd.DataFrame: 
    """ 
    Add periodicity-based features to a time series dataframe to capture potential cyclical patterns. 
 
    The function generates sine and cosine features based on daily, half-day, quarter-yearly,  
    and yearly periods. These are useful for capturing day-night cycles, seasonal changes,  
    and other cyclical behaviors observed in time series data. 
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    Parameters: 
    ---------- 
    df (pd.DataFrame):  
        The input dataframe with a DatetimeIndex containing the timestamps for which periodicity  
        features are to be generated. 
 
    Returns: 
    ---------- 
    pd.DataFrame: 
        A dataframe containing the original data and the following additional columns: 
        - 'sin_day': Sine value representing the time of day with a 24-hour period. 
        - 'cos_day': Cosine value representing the time of day with a 24-hour period. 
        - 'sin_half_day': Sine value representing the time of day with a 12-hour period. 
        - 'cos_half_day': Cosine value representing the time of day with a 12-hour period. 
        - 'sin_quarter': Sine value representing the day of the year with a ~91.25-day period  
        (quarter-yearly). 
        - 'cos_quarter': Cosine value representing the day of the year with a ~91.25-day period  
        (quarter-yearly). 
        - 'sin_year': Sine value representing the day of the year with a 365-day period. 
        - 'cos_year': Cosine value representing the day of the year with a 365-day period. 
 
    Example: 
    -------- 
    >>> data = pd.DataFrame({'value': [...]}, index=pd.date_range(start="2022-01-01", periods=365)) 
    >>> enhanced_data = add_periodicity_features(data) 
 
    Notes: 
    ------ 
    - The input dataframe is expected to have a datetime index. 
    - This function does not mutate the original dataframe. It returns a new dataframe with added features. 
    """ 
    # Make a copy of the input DataFrame to avoid modifying it 
    df = df.copy() 
    dt_index = df.index 
    df["sin_day"] = np.sin(2 * np.pi * dt_index.hour / 24) 
    df["cos_day"] = np.cos(2 * np.pi * dt_index.hour / 24) 
 
    df["sin_half_day"] = np.sin(2 * np.pi * dt_index.hour / 12) 
    df["cos_half_day"] = np.cos(2 * np.pi * dt_index.hour / 12) 
 
    df["sin_quarter"] = np.sin(2 * np.pi * dt_index.dayofyear / 91.25) 
    df["cos_quarter"] = np.cos(2 * np.pi * dt_index.dayofyear / 91.25) 
 
    df["sin_year"] = np.sin(2 * np.pi * dt_index.dayofyear / 365) 
    df["cos_year"] = np.cos(2 * np.pi * dt_index.dayofyear / 365) 
    return df 
 
 

9.1.5 LinearModel() 

 
class LinearModel(nn.Module): 
    """ 
    A simple linear regression model suitable for time series forecasting. 
 
    Parameters: 
    - input_size (int): Number of input features. 
 
    Attributes: 
    - linear (nn.Linear): A linear layer that transforms input features into a single output. 
 
    Methods: 
    - forward(x: torch.Tensor) -> torch.Tensor: Implements the forward propagation of the model. 
 
    Example: 
    -------- 
    >>> model = LinearModel(input_size=10) 
    >>> input_data = torch.randn(32, 10)  # Batch of 32, each with 10 features 
    >>> output = model(input_data) 
 
    Notes: 
    ------ 
    - The forward method can process both 2D (batch_size, num_features) and 
      3D (batch_size, sequence_len, num_features) input tensors. If the input is 3D, 
      it gets reshaped to 2D. 
    """ 
 
    def __init__(self, input_size): 
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        super(LinearModel, self).__init__() 
        self.linear = nn.Linear(input_size, 1) 
 
    def forward(self, x): 
        # If x is 3D (batch_size, sequence_len, num_features), we might need to reshape it 
        x = x.reshape(x.size(0), -1) 
        return self.linear(x) 

 

9.1.6 LSTMModel() 

class LSTMModel(nn.Module): 
    """ 
    LSTM-based model designed for time series forecasting. Suitable for both univariate and  
    multivariate time series. 
 
    Parameters: 
    - feature_dim (int): Number of expected features in the input `x`. 
    - hidden_size (int, optional): Number of features in the hidden state. Default: 50. 
    - output_dim (int, optional): Number of features in the output. Default: 1. 
    - num_layers (int, optional): Number of recurrent layers. Default: 1. 
 
    Attributes: 
    - lstm (nn.LSTM): LSTM layer. 
    - linear (nn.Linear): Linear layer to produce the final output. 
 
    Methods: 
    - forward(x: torch.Tensor) -> torch.Tensor: Implements the forward propagation of the model. 
 
    Example: 
    -------- 
    >>> model = LSTMModel(feature_dim=10) 
    >>> input_data = torch.randn(32, 7, 10)  # Batch of 32, sequence length of 7, each with 10 features 
    >>> output = model(input_data) 
    """ 
 
    def __init__(self, feature_dim, hidden_size=50, output_dim=1, num_layers=1): 
        super().__init__() 
        self.lstm = nn.LSTM(feature_dim, hidden_size, num_layers, batch_first=True) 
        self.linear = nn.Linear(hidden_size, output_dim) 
 
    def forward(self, x): 
        """ 
        Forward propagation method for the LSTM model. 
 
        Args: 
        - x (torch.Tensor): Input tensor with sequences. Expected shape: [batch_size, sequence_length,  
        feature_dim]. 
 
        Returns: 
        - torch.Tensor: Output tensor with predictions. Shape: [batch_size, output_dim]. 
        """ 
        x, _ = self.lstm(x) 
        x = self.linear(x) 
        return x[:, -1, :]  # Selecting the last output of the sequence 

 
 

9.1.7 sliding_windows() 

def sliding_windows( 
    data: np.ndarray, 
    window_size: int, 
    input_feature_indices: list, 
    target_feature_index: int, 
    horizon: int, 
    stride=1, 
    shapes=False, 
)-> tuple: 
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    """ 
    Generate sliding windows from the provided time-series data for sequence learning. 
 
    Parameters: 
    - data (np.ndarray): The time-series data from which windows will be generated. 
    - window_size (int): Specifies the size of each sliding window. 
    - input_feature_indices (list of ints): The indices of features to be considered as input. 
    - target_feature_index (int): Index of the feature that needs to be predicted. 
    - horizon (int): How many steps ahead the prediction should be. 
    - stride (int, optional): Steps between the start of each window. Defaults to 1. 
    - shapes (bool, optional): If set to True, it prints shapes of input and target for the first  
    window. Defaults to False. 
 
    Returns: 
    - tuple: Contains inputs and targets as torch tensors. 
    """ 
    inputs = [] 
    targets = [] 
    for i in range(0, len(data) - window_size - horizon + 1, stride): 
        input_data = data[ 
            i : i + window_size, input_feature_indices 
        ]  # selects only the features indicated by input_feature_indices 
        target_data = data[ 
            i + window_size + horizon - 1, target_feature_index 
        ]  # selects the feature indicated by target_feature_index, horizon steps ahead 
        if i == 0 and shapes: 
            print( 
                f"Input shape: {input_data.shape} | Target shape: {target_data.shape}" 
            ) 
        inputs.append(input_data) 
        targets.append(target_data) 
 
    # Convert lists of numpy arrays to numpy arrays 
    inputs = np.array(inputs) 
    targets = np.array(targets) 
 
    return torch.tensor(inputs), torch.tensor(targets) 

 

9.1.8 prepare_dataloaders() 

def prepare_dataloaders( 
    data: np.ndarray, 
    window_size: int, 
    input_feature_indices: list, 
    target_feature_index: int, 
    horizon: int, 
    stride: int, 
    batch_size: int, 
    shuffle=False, 
    num_workers=0, 
) -> tuple(Dataset, Dataset, np.ndarray, np.ndarray, np.ndarray, np.ndarray): 
    """ 
    Prepares training and test dataloaders using sliding windows on the given time-series data. 
 
    Parameters: 
    - data (np.ndarray): Time-series data. 
    - window_size (int): Size of each sliding window. 
    - input_feature_indices (list of ints): Indices of features to be considered as input. 
    - target_feature_index (int): The index of the feature that needs to be predicted. 
    - horizon (int): Steps ahead for the prediction. 
    - stride (int): Steps between the start of each window. 
    - batch_size (int): Number of samples per batch to load. 
    - shuffle (bool, optional): Whether to shuffle the data samples. Defaults to False. 
    - num_workers (int, optional): Number of subprocesses to use for data loading. Defaults to 0. 
 
    Returns: 
    - tuple: Contains train DataLoader, test DataLoader, test inputs, test targets, train inputs, and  
    train targets. 
    """ 
    inputs, targets = sliding_windows( 
        data=data, 
        window_size=window_size, 
        input_feature_indices=input_feature_indices, 
        target_feature_index=target_feature_index, 
        horizon=horizon, 
        stride=stride, 
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    ) 
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9.1.9 Full Overview of Raw Data 
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9.2 Results 

9.2.1 Univariate Anomaly Detection 

Model Model 
Number 

Completeness Sequence Horizon Window 
Size 

MAE Anomaly 
Percentage 

Anomaly 
Threshold 

Linear 1 1 216 3 1 0.26 0.234 1.9 

LSTM 2 1 216 3 3 0.27 0.161 2.1 

LSTM 3 1 216 3 6 0.33 0.044 2.9 

LSTM 4 1 216 3 12 0.36 0.644 3.8 

LSTM 5 1 216 3 24 0.39 0.029 3.2 

LSTM 6 1 216 3 48 0.28 0.103 2.3 

LSTM 7 1 216 3 96 0.30 0.044 2.6 

Linear 8 1 216 6 1 0.43 0.000 2.9 

LSTM 9 1 216 6 3 0.46 0.000 3.6 

LSTM 10 1 216 6 6 0.48 0.000 3.6 

LSTM 11 1 216 6 12 0.53 0.015 4.2 

LSTM 12 1 216 6 24 0.77 0.000 4.8 

LSTM 13 1 216 6 48 0.55 0.000 4 

LSTM 14 1 216 6 96 0.58 0.000 4.9 

Linear 15 1 216 12 1 0.65 0.000 4.1 

LSTM 16 1 216 12 3 0.66 0.000 4.4 

LSTM 17 1 216 12 6 0.69 0.000 4.6 

LSTM 18 1 216 12 12 0.69 0.000 4.4 

LSTM 19 1 216 12 24 0.67 0.000 4.5 

LSTM 20 1 216 12 48 0.65 0.000 4.2 

LSTM 21 1 216 12 96 0.71 0.000 4.2 

Linear 22 1 216 24 1 0.77 0.000 4.8 

LSTM 23 1 216 24 3 0.78 0.000 4.8 

LSTM 24 1 216 24 6 1.22 0.000 12.8 

LSTM 25 1 216 24 12 0.66 0.000 4.5 

LSTM 26 1 216 24 24 0.79 0.015 4.9 

LSTM 27 1 216 24 48 0.58 0.000 4 

LSTM 28 1 216 24 96 0.82 0.000 4.9 

Linear 29 1 432 3 1 0.26 0.234 1.9 

LSTM 30 1 432 3 3 0.27 0.073 2.2 

LSTM 31 1 432 3 6 0.31 0.015 2.5 

LSTM 32 1 432 3 12 0.35 0.117 3.2 

LSTM 33 1 432 3 24 0.35 0.000 2.8 

LSTM 34 1 432 3 48 0.27 0.044 2.2 

LSTM 35 1 432 3 96 0.68 0.000 5 

Linear 36 1 432 6 1 0.43 0.000 2.9 

LSTM 37 1 432 6 3 0.49 0.000 3.9 

LSTM 38 1 432 6 6 0.49 0.000 3.5 

LSTM 39 1 432 6 12 0.50 0.059 3.9 
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LSTM 40 1 432 6 24 0.53 0.044 4.3 

LSTM 41 1 432 6 48 0.72 0.015 5.1 

LSTM 42 1 432 6 96 0.52 0.680 5.5 

Linear 43 1 432 12 1 0.65 0.000 4.1 

LSTM 44 1 432 12 3 0.68 0.000 4.7 

LSTM 45 1 432 12 6 0.67 0.000 4.6 

LSTM 46 1 432 12 12 0.67 0.000 4.7 

LSTM 47 1 432 12 24 0.60 0.000 4.2 

LSTM 48 1 432 12 48 0.65 0.000 4.7 

LSTM 49 1 432 12 96 0.73 0.178 4.5 

Linear 50 1 432 24 1 0.77 0.000 4.8 

LSTM 51 1 432 24 3 0.78 0.000 4.8 

LSTM 52 1 432 24 6 0.73 0.000 4.8 

LSTM 53 1 432 24 12 1.03 0.059 6.8 

LSTM 54 1 432 24 24 0.83 0.000 5 

LSTM 55 1 432 24 48 0.76 0.000 5.1 

LSTM 56 1 432 24 96 0.80 0.000 4.6 

Linear 57 1 648 3 1 0.26 0.234 1.9 

LSTM 58 1 648 3 3 0.30 0.015 2.4 

LSTM 59 1 648 3 6 0.25 0.234 2.1 

LSTM 60 1 648 3 12 0.38 0.000 3.4 

LSTM 61 1 648 3 24 0.33 0.000 2.8 

LSTM 62 1 648 3 48 0.33 0.059 2.8 

LSTM 63 1 648 3 96 1.58 0.000 9.6 

Linear 64 1 648 6 1 0.43 0.000 2.9 

LSTM 65 1 648 6 3 0.50 0.000 4 

LSTM 66 1 648 6 6 0.51 0.000 4.1 

LSTM 67 1 648 6 12 0.52 0.000 3.8 

LSTM 68 1 648 6 24 0.48 0.000 3.5 

LSTM 69 1 648 6 48 0.46 0.000 3.7 

LSTM 70 1 648 6 96 0.48 0.000 4 

Linear 71 1 648 12 1 0.65 0.000 4.1 

LSTM 72 1 648 12 3 0.69 0.000 4.7 

LSTM 73 1 648 12 6 0.70 0.161 4.9 

LSTM 74 1 648 12 12 0.70 0.000 4.5 

LSTM 75 1 648 12 24 0.68 0.000 4.2 

LSTM 76 1 648 12 48 0.64 0.000 4.5 

LSTM 77 1 648 12 96 0.76 0.000 5 

Linear 78 1 648 24 1 0.77 0.000 4.8 

LSTM 79 1 648 24 3 0.78 0.000 4.8 

LSTM 80 1 648 24 6 0.77 0.000 4.8 

LSTM 81 1 648 24 12 0.78 0.000 4.8 

LSTM 82 1 648 24 24 0.60 0.000 4.6 

LSTM 83 1 648 24 48 0.62 0.000 4.3 

LSTM 84 1 648 24 96 0.75 0.000 4.7 



Carrow Morris-Wiltshire           MRes Dissertation 

  109 

 

Linear 85 1 864 3 1 0.26 0.234 1.9 

LSTM 86 1 864 3 3 0.27 0.073 2.2 

LSTM 87 1 864 3 6 0.26 0.234 2.1 

LSTM 88 1 864 3 12 0.44 0.000 4.2 

LSTM 89 1 864 3 24 0.76 0.000 6.9 

LSTM 90 1 864 3 48 0.37 0.250 3.6 

LSTM 91 1 864 3 96 0.30 0.015 2.5 

Linear 92 1 864 6 1 0.43 0.000 2.9 

LSTM 93 1 864 6 3 0.50 0.000 3.9 

LSTM 94 1 864 6 6 0.51 0.000 3.9 

LSTM 95 1 864 6 12 0.46 0.000 3.3 

LSTM 96 1 864 6 24 0.49 0.000 4.1 

LSTM 97 1 864 6 48 0.58 0.000 3.6 

LSTM 98 1 864 6 96 0.77 0.015 4.7 

Linear 99 1 864 12 1 0.65 0.000 4.1 

LSTM 100 1 864 12 3 0.69 0.000 4.6 

LSTM 101 1 864 12 6 0.73 0.176 4.9 

LSTM 102 1 864 12 12 0.65 0.000 4.5 

LSTM 103 1 864 12 24 0.71 0.000 4.5 

LSTM 104 1 864 12 48 0.66 0.000 4.6 

LSTM 105 1 864 12 96 0.69 0.000 4.4 

Linear 106 1 864 24 1 0.77 0.000 4.8 

LSTM 107 1 864 24 3 0.78 0.000 4.8 

LSTM 108 1 864 24 6 0.74 0.000 4.8 

LSTM 109 1 864 24 12 0.84 0.000 5.1 

LSTM 110 1 864 24 24 0.86 0.000 6 

LSTM 111 1 864 24 48 0.82 0.000 5.1 

LSTM 112 1 864 24 96 1.18 0.000 8 

Linear 113 0.98 694 3 1 0.24 0.205 1.9 

LSTM 114 0.98 694 3 3 0.22 0.205 1.9 

LSTM 115 0.98 694 3 6 0.23 0.219 1.9 

LSTM 116 0.98 694 3 12 0.21 0.293 1.8 

LSTM 117 0.98 694 3 24 0.22 0.308 1.7 

LSTM 118 0.98 694 3 48 0.22 0.294 1.7 

LSTM 119 0.98 694 3 96 0.83 0.000 4 

Linear 120 0.98 694 6 1 0.39 0.029 2.7 

LSTM 121 0.98 694 6 3 0.35 0.088 2.6 

LSTM 122 0.98 694 6 6 0.33 0.088 2.7 

LSTM 123 0.98 694 6 12 0.28 0.249 2.3 

LSTM 124 0.98 694 6 24 0.36 0.103 2.3 

LSTM 125 0.98 694 6 48 0.29 0.147 2.3 

LSTM 126 0.98 694 6 96 0.30 0.104 2.5 

Linear 127 0.98 694 12 1 0.67 0.000 3.6 

LSTM 128 0.98 694 12 3 0.56 0.000 3.6 

LSTM 129 0.98 694 12 6 0.47 0.000 3.5 
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LSTM 130 0.98 694 12 12 0.39 0.000 2.9 

LSTM 131 0.98 694 12 24 0.35 0.000 2.7 

LSTM 132 0.98 694 12 48 0.38 0.000 3 

LSTM 133 0.98 694 12 96 0.44 0.000 3 

Linear 134 0.98 694 24 1 0.86 0.000 3.9 

LSTM 135 0.98 694 24 3 0.73 0.000 4.2 

LSTM 136 0.98 694 24 6 0.79 0.000 4 

LSTM 137 0.98 694 24 12 0.54 0.000 3.5 

LSTM 138 0.98 694 24 24 0.49 0.000 3.5 

LSTM 139 0.98 694 24 48 0.60 0.000 4.1 

LSTM 140 0.98 694 24 96 0.83 0.000 3.9 

Linear 141 0.98 1388 3 1 0.24 0.205 1.9 

LSTM 142 0.98 1388 3 3 0.22 0.190 1.9 

LSTM 143 0.98 1388 3 6 0.22 0.219 1.9 

LSTM 144 0.98 1388 3 12 0.20 0.351 1.7 

LSTM 145 0.98 1388 3 24 0.24 0.161 1.9 

LSTM 146 0.98 1388 3 48 0.27 0.191 2 

LSTM 147 0.98 1388 3 96 0.23 0.177 1.9 

Linear 148 0.98 1388 6 1 0.39 0.029 2.7 

LSTM 149 0.98 1388 6 3 0.35 0.059 2.6 

LSTM 150 0.98 1388 6 6 0.33 0.132 2.6 

LSTM 151 0.98 1388 6 12 0.29 0.146 2.4 

LSTM 152 0.98 1388 6 24 0.38 0.073 2.5 

LSTM 153 0.98 1388 6 48 0.28 0.103 2.4 

LSTM 154 0.98 1388 6 96 0.28 0.133 2.6 

Linear 155 0.98 1388 12 1 0.67 0.000 3.6 

LSTM 156 0.98 1388 12 3 0.59 0.000 3.5 

LSTM 157 0.98 1388 12 6 0.44 0.000 3.4 

LSTM 158 0.98 1388 12 12 0.38 0.015 2.9 

LSTM 159 0.98 1388 12 24 0.36 0.015 2.8 

LSTM 160 0.98 1388 12 48 0.63 0.000 3.6 

LSTM 161 0.98 1388 12 96 0.51 0.000 3.2 

Linear 162 0.98 1388 24 1 0.86 0.000 3.9 

LSTM 163 0.98 1388 24 3 0.72 0.015 4.3 

LSTM 164 0.98 1388 24 6 0.59 0.015 3.9 

LSTM 165 0.98 1388 24 12 0.53 0.000 3.5 

LSTM 166 0.98 1388 24 24 0.49 0.000 3.4 

LSTM 167 0.98 1388 24 48 0.55 0.000 4.1 

LSTM 168 0.98 1388 24 96 0.56 0.000 4.5 

Linear 169 0.98 2082 3 1 0.24 0.205 1.9 

LSTM 170 0.98 2082 3 3 0.23 0.190 1.9 

LSTM 171 0.98 2082 3 6 0.23 0.263 1.9 

LSTM 172 0.98 2082 3 12 0.21 0.263 1.8 

LSTM 173 0.98 2082 3 24 0.20 0.264 1.7 

LSTM 174 0.98 2082 3 48 0.22 0.147 1.8 
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LSTM 175 0.98 2082 3 96 0.20 0.207 1.8 

Linear 176 0.98 2082 6 1 0.39 0.029 2.7 

LSTM 177 0.98 2082 6 3 0.36 0.073 2.7 

LSTM 178 0.98 2082 6 6 0.31 0.088 2.6 

LSTM 179 0.98 2082 6 12 0.27 0.264 2.3 

LSTM 180 0.98 2082 6 24 0.26 0.191 2.1 

LSTM 181 0.98 2082 6 48 0.32 0.162 2.6 

LSTM 182 0.98 2082 6 96 0.37 0.104 2.8 

Linear 183 0.98 2082 12 1 0.67 0.000 3.6 

LSTM 184 0.98 2082 12 3 0.55 0.000 3.5 

LSTM 185 0.98 2082 12 6 0.47 0.000 3.4 

LSTM 186 0.98 2082 12 12 0.40 0.059 3.1 

LSTM 187 0.98 2082 12 24 0.42 0.000 2.7 

LSTM 188 0.98 2082 12 48 0.39 0.000 3.3 

LSTM 189 0.98 2082 12 96 0.40 0.000 2.7 

Linear 190 0.98 2082 24 1 0.86 0.000 3.9 

LSTM 191 0.98 2082 24 3 0.71 0.000 4.4 

LSTM 192 0.98 2082 24 6 0.75 0.000 4 

LSTM 193 0.98 2082 24 12 0.51 0.000 3.6 

LSTM 194 0.98 2082 24 24 0.48 0.000 3.5 

LSTM 195 0.98 2082 24 48 0.52 0.000 4.1 

LSTM 196 0.98 2082 24 96 0.48 0.000 3.5 

Linear 197 0.98 2776 3 1 0.24 0.205 1.9 

LSTM 198 0.98 2776 3 3 0.23 0.175 1.9 

LSTM 199 0.98 2776 3 6 0.22 0.263 1.9 

LSTM 200 0.98 2776 3 12 0.21 0.293 1.8 

LSTM 201 0.98 2776 3 24 0.23 0.293 1.8 

LSTM 202 0.98 2776 3 48 0.24 0.176 1.8 

LSTM 203 0.98 2776 3 96 0.22 0.103 1.9 

Linear 204 0.98 2776 6 1 0.39 0.029 2.7 

LSTM 205 0.98 2776 6 3 0.43 0.015 2.8 

LSTM 206 0.98 2776 6 6 0.33 0.117 2.6 

LSTM 207 0.98 2776 6 12 0.32 0.132 2.4 

LSTM 208 0.98 2776 6 24 0.33 0.088 2.3 

LSTM 209 0.98 2776 6 48 0.27 0.118 2.4 

LSTM 210 0.98 2776 6 96 0.38 0.044 2.5 

Linear 211 0.98 2776 12 1 0.67 0.000 3.6 

LSTM 212 0.98 2776 12 3 0.56 0.029 3.6 

LSTM 213 0.98 2776 12 6 0.46 0.000 3.5 

LSTM 214 0.98 2776 12 12 0.40 0.000 3.1 

LSTM 215 0.98 2776 12 24 0.37 0.029 2.8 

LSTM 216 0.98 2776 12 48 0.42 0.000 3.3 

LSTM 217 0.98 2776 12 96 0.43 0.000 3.5 

Linear 218 0.98 2776 24 1 0.86 0.000 3.9 

LSTM 219 0.98 2776 24 3 0.77 0.000 4.3 
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LSTM 220 0.98 2776 24 6 0.75 0.000 4 

LSTM 221 0.98 2776 24 12 0.52 0.000 3.8 

LSTM 222 0.98 2776 24 24 0.46 0.000 3.5 

LSTM 223 0.98 2776 24 48 0.52 0.000 4.2 

LSTM 224 0.98 2776 24 96 0.54 0.000 4.3 

Linear 225 0.98 3470 3 1 0.24 0.205 1.9 

LSTM 226 0.98 3470 3 3 0.22 0.205 1.9 

LSTM 227 0.98 3470 3 6 0.22 0.322 1.9 

LSTM 228 0.98 3470 3 12 0.21 0.249 1.9 

LSTM 229 0.98 3470 3 24 0.20 0.249 1.7 

LSTM 230 0.98 3470 3 48 0.22 0.294 1.7 

LSTM 231 0.98 3470 3 96 0.19 0.310 1.7 

Linear 232 0.98 3470 6 1 0.39 0.029 2.7 

LSTM 233 0.98 3470 6 3 0.35 0.044 2.6 

LSTM 234 0.98 3470 6 6 0.32 0.190 2.5 

LSTM 235 0.98 3470 6 12 0.28 0.278 2.4 

LSTM 236 0.98 3470 6 24 0.39 0.015 2.8 

LSTM 237 0.98 3470 6 48 0.30 0.118 2.3 

LSTM 238 0.98 3470 6 96 0.85 0.000 4 

Linear 239 0.98 3470 12 1 0.67 0.000 3.6 

LSTM 240 0.98 3470 12 3 0.55 0.000 3.6 

LSTM 241 0.98 3470 12 6 0.45 0.000 3.5 

LSTM 242 0.98 3470 12 12 0.39 0.044 3.1 

LSTM 243 0.98 3470 12 24 0.38 0.000 2.5 

LSTM 244 0.98 3470 12 48 0.35 0.000 2.8 

LSTM 245 0.98 3470 12 96 0.38 0.000 3.1 

Linear 246 0.98 3470 24 1 0.86 0.000 3.9 

LSTM 247 0.98 3470 24 3 0.75 0.000 4.3 

LSTM 248 0.98 3470 24 6 0.61 0.015 3.9 

LSTM 249 0.98 3470 24 12 0.67 0.763 5.1 

LSTM 250 0.98 3470 24 24 0.42 0.000 3.4 

LSTM 251 0.98 3470 24 48 0.43 0.000 3.5 

LSTM 252 0.98 3470 24 96 0.58 0.000 4.4 

Linear 253 0.96 1288 3 1 0.25 0.234 1.9 

LSTM 254 0.96 1288 3 3 0.25 0.146 2 

LSTM 255 0.96 1288 3 6 0.24 0.161 2 

LSTM 256 0.96 1288 3 12 0.24 0.234 2 

LSTM 257 0.96 1288 3 24 0.21 0.220 1.8 

LSTM 258 0.96 1288 3 48 0.21 0.162 1.9 

LSTM 259 0.96 1288 3 96 0.26 0.163 2 

Linear 260 0.96 1288 6 1 0.40 0.015 2.8 

LSTM 261 0.96 1288 6 3 0.39 0.029 2.8 

LSTM 262 0.96 1288 6 6 0.37 0.015 2.9 

LSTM 263 0.96 1288 6 12 0.34 0.029 2.7 

LSTM 264 0.96 1288 6 24 0.32 0.029 2.6 



Carrow Morris-Wiltshire           MRes Dissertation 

  113 

 

LSTM 265 0.96 1288 6 48 0.29 0.044 2.6 

LSTM 266 0.96 1288 6 96 0.68 0.000 4.8 

Linear 267 0.96 1288 12 1 0.63 0.000 3.9 

LSTM 268 0.96 1288 12 3 0.61 0.000 4 

LSTM 269 0.96 1288 12 6 0.57 0.000 3.8 

LSTM 270 0.96 1288 12 12 0.51 0.000 3.5 

LSTM 271 0.96 1288 12 24 0.43 0.000 3.4 

LSTM 272 0.96 1288 12 48 0.44 0.000 3.5 

LSTM 273 0.96 1288 12 96 0.43 0.000 3.4 

Linear 274 0.96 1288 24 1 0.77 0.000 4.8 

LSTM 275 0.96 1288 24 3 0.72 0.000 4.8 

LSTM 276 0.96 1288 24 6 0.64 0.000 4.4 

LSTM 277 0.96 1288 24 12 0.55 0.000 4 

LSTM 278 0.96 1288 24 24 0.57 0.000 4.4 

LSTM 279 0.96 1288 24 48 0.58 0.000 4.4 

LSTM 280 0.96 1288 24 96 0.76 0.000 5.3 

Linear 281 0.96 2576 3 1 0.25 0.234 1.9 

LSTM 282 0.96 2576 3 3 0.25 0.146 2 

LSTM 283 0.96 2576 3 6 0.23 0.219 1.9 

LSTM 284 0.96 2576 3 12 0.24 0.146 2 

LSTM 285 0.96 2576 3 24 0.23 0.220 1.9 

LSTM 286 0.96 2576 3 48 0.23 0.338 2.2 

LSTM 287 0.96 2576 3 96 0.33 0.843 4.4 

Linear 288 0.96 2576 6 1 0.40 0.015 2.8 

LSTM 289 0.96 2576 6 3 0.41 0.015 2.9 

LSTM 290 0.96 2576 6 6 0.38 0.073 4.5 

LSTM 291 0.96 2576 6 12 0.37 0.029 2.8 

LSTM 292 0.96 2576 6 24 0.31 0.059 2.6 

LSTM 293 0.96 2576 6 48 0.45 0.000 3.4 

LSTM 294 0.96 2576 6 96 0.40 0.015 2.9 

Linear 295 0.96 2576 12 1 0.63 0.000 3.9 

LSTM 296 0.96 2576 12 3 0.62 0.000 4 

LSTM 297 0.96 2576 12 6 0.54 0.000 3.8 

LSTM 298 0.96 2576 12 12 0.46 0.000 3.4 

LSTM 299 0.96 2576 12 24 0.43 0.000 3.2 

LSTM 300 0.96 2576 12 48 0.51 0.000 3.9 

LSTM 301 0.96 2576 12 96 0.43 0.000 3.5 

Linear 302 0.96 2576 24 1 0.77 0.000 4.8 

LSTM 303 0.96 2576 24 3 0.76 0.000 4.8 

LSTM 304 0.96 2576 24 6 0.70 0.000 4.6 

LSTM 305 0.96 2576 24 12 0.52 0.000 4.1 

LSTM 306 0.96 2576 24 24 0.48 0.000 4.1 

LSTM 307 0.96 2576 24 48 0.50 0.000 4 

LSTM 308 0.96 2576 24 96 0.74 0.000 4.9 

Linear 309 0.96 3864 3 1 0.25 0.234 1.9 
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LSTM 310 0.96 3864 3 3 0.26 0.263 2.1 

LSTM 311 0.96 3864 3 6 0.25 0.132 2 

LSTM 312 0.96 3864 3 12 0.24 0.132 2 

LSTM 313 0.96 3864 3 24 0.23 0.147 2.1 

LSTM 314 0.96 3864 3 48 0.23 0.191 2.1 

LSTM 315 0.96 3864 3 96 0.24 0.177 2 

Linear 316 0.96 3864 6 1 0.40 0.015 2.8 

LSTM 317 0.96 3864 6 3 0.38 0.029 2.8 

LSTM 318 0.96 3864 6 6 0.36 0.044 2.9 

LSTM 319 0.96 3864 6 12 0.37 0.059 2.9 

LSTM 320 0.96 3864 6 24 0.38 0.249 3 

LSTM 321 0.96 3864 6 48 0.33 0.000 3.0 

LSTM 322 0.96 3864 6 96 0.35 0.015 2.9 

Linear 323 0.96 3864 12 1 0.63 0.000 3.9 

LSTM 324 0.96 3864 12 3 0.60 0.000 4 

LSTM 325 0.96 3864 12 6 0.55 0.000 3.7 

LSTM 326 0.96 3864 12 12 0.45 0.000 3.4 

LSTM 327 0.96 3864 12 24 0.63 0.000 4.1 

LSTM 328 0.96 3864 12 48 0.41 0.000 3.4 

LSTM 329 0.96 3864 12 96 0.50 0.000 3.9 

Linear 330 0.96 3864 24 1 0.77 0.000 4.8 

LSTM 331 0.96 3864 24 3 0.70 0.000 4.7 

LSTM 332 0.96 3864 24 6 0.61 0.000 4.4 

LSTM 333 0.96 3864 24 12 0.58 0.000 4.1 

LSTM 334 0.96 3864 24 24 0.76 0.000 4.9 

LSTM 335 0.96 3864 24 48 0.52 0.000 4 

LSTM 336 0.96 3864 24 96 0.60 0.000 4.9 

Linear 337 0.96 5152 3 1 0.25 0.234 1.9 

LSTM 338 0.96 5152 3 3 0.25 0.234 2.1 

LSTM 339 0.96 5152 3 6 0.24 0.190 2 

LSTM 340 0.96 5152 3 12 0.24 0.249 2.1 

LSTM 341 0.96 5152 3 24 0.27 0.073 2.5 

LSTM 342 0.96 5152 3 48 0.26 0.147 2 

LSTM 343 0.96 5152 3 96 0.33 0.118 2.2 

Linear 344 0.96 5152 6 1 0.40 0.015 2.8 

LSTM 345 0.96 5152 6 3 0.39 0.015 2.9 

LSTM 346 0.96 5152 6 6 0.36 0.044 2.7 

LSTM 347 0.96 5152 6 12 0.36 0.044 2.8 

LSTM 348 0.96 5152 6 24 0.31 0.029 2.6 

LSTM 349 0.96 5152 6 48 0.36 0.632 3.6 

LSTM 350 0.96 5152 6 96 0.48 0.015 3.9 

Linear 351 0.96 5152 12 1 0.63 0.000 3.9 

LSTM 352 0.96 5152 12 3 0.60 0.000 3.9 

LSTM 353 0.96 5152 12 6 0.56 0.000 3.8 

LSTM 354 0.96 5152 12 12 0.48 0.000 3.4 
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LSTM 355 0.96 5152 12 24 0.42 0.000 3.3 

LSTM 356 0.96 5152 12 48 0.47 0.015 3.6 

LSTM 357 0.96 5152 12 96 0.51 0.000 4.1 

Linear 358 0.96 5152 24 1 0.77 0.000 4.8 

LSTM 359 0.96 5152 24 3 0.76 0.000 4.8 

LSTM 360 0.96 5152 24 6 0.62 0.000 4.3 

LSTM 361 0.96 5152 24 12 0.59 0.000 4.1 

LSTM 362 0.96 5152 24 24 0.47 0.000 4.1 

LSTM 363 0.96 5152 24 48 0.65 0.000 4.5 

LSTM 364 0.96 5152 24 96 0.48 0.000 3.9 

Linear 365 0.96 6440 3 1 0.25 0.234 1.9 

LSTM 366 0.96 6440 3 3 0.25 0.175 2 

LSTM 367 0.96 6440 3 6 0.25 0.176 2 

LSTM 368 0.96 6440 3 12 0.24 0.146 2 

LSTM 369 0.96 6440 3 24 0.23 0.147 2 

LSTM 370 0.96 6440 3 48 0.26 0.059 2.1 

LSTM 371 0.96 6440 3 96 0.23 0.192 2 

Linear 372 0.96 6440 6 1 0.40 0.015 2.8 

LSTM 373 0.96 6440 6 3 0.40 0.015 2.9 

LSTM 374 0.96 6440 6 6 0.38 0.029 2.8 

LSTM 375 0.96 6440 6 12 0.35 0.059 2.9 

LSTM 376 0.96 6440 6 24 0.41 0.000 3 

LSTM 377 0.96 6440 6 48 0.32 0.088 2.7 

LSTM 378 0.96 6440 6 96 0.45 0.000 4.3 

Linear 379 0.96 6440 12 1 0.63 0.000 3.9 

LSTM 380 0.96 6440 12 3 0.59 0.000 3.9 

LSTM 381 0.96 6440 12 6 0.56 0.000 4 

LSTM 382 0.96 6440 12 12 0.47 0.000 3.4 

LSTM 383 0.96 6440 12 24 0.44 0.000 3.2 

LSTM 384 0.96 6440 12 48 0.44 0.000 3.6 

LSTM 385 0.96 6440 12 96 0.68 1.465 8.4 

Linear 386 0.96 6440 24 1 0.77 0.000 4.8 

LSTM 387 0.96 6440 24 3 0.68 0.000 4.7 

LSTM 388 0.96 6440 24 6 0.60 0.015 4.4 

LSTM 389 0.96 6440 24 12 0.54 0.000 4.2 

LSTM 390 0.96 6440 24 24 0.48 0.000 4.2 

LSTM 391 0.96 6440 24 48 0.48 0.000 4 

LSTM 392 0.96 6440 24 96 0.50 0.000 4 

Linear 393 0.94 1810 3 1 0.24 0.219 1.9 

LSTM 394 0.94 1810 3 3 0.24 0.161 1.9 

LSTM 395 0.94 1810 3 6 0.23 0.161 1.9 

LSTM 396 0.94 1810 3 12 0.23 0.146 1.9 

LSTM 397 0.94 1810 3 24 0.21 0.191 1.8 

LSTM 398 0.94 1810 3 48 0.21 0.220 1.8 

LSTM 399 0.94 1810 3 96 0.23 0.133 2 
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Linear 400 0.94 1810 6 1 0.40 0.015 2.8 

LSTM 401 0.94 1810 6 3 0.36 0.044 2.7 

LSTM 402 0.94 1810 6 6 0.35 0.015 2.6 

LSTM 403 0.94 1810 6 12 0.31 0.015 2.6 

LSTM 404 0.94 1810 6 24 0.30 0.000 2.5 

LSTM 405 0.94 1810 6 48 0.28 0.000 2.5 

LSTM 406 0.94 1810 6 96 0.32 0.030 2.6 

Linear 407 0.94 1810 12 1 0.63 0.000 3.9 

LSTM 408 0.94 1810 12 3 0.56 0.000 3.8 

LSTM 409 0.94 1810 12 6 0.49 0.015 3.5 

LSTM 410 0.94 1810 12 12 0.42 0.059 3.5 

LSTM 411 0.94 1810 12 24 0.40 0.000 3.3 

LSTM 412 0.94 1810 12 48 0.61 0.000 4 

LSTM 413 0.94 1810 12 96 0.63 0.015 4 

Linear 414 0.94 1810 24 1 0.77 0.000 4.8 

LSTM 415 0.94 1810 24 3 0.72 0.000 4.7 

LSTM 416 0.94 1810 24 6 0.59 0.000 4.2 

LSTM 417 0.94 1810 24 12 0.62 0.000 4.3 

LSTM 418 0.94 1810 24 24 0.57 0.073 4.5 

LSTM 419 0.94 1810 24 48 0.46 0.000 3.8 

LSTM 420 0.94 1810 24 96 0.47 0.000 3.9 

Linear 421 0.94 3620 3 1 0.24 0.219 1.9 

LSTM 422 0.94 3620 3 3 0.24 0.161 2 

LSTM 423 0.94 3620 3 6 0.23 0.146 1.9 

LSTM 424 0.94 3620 3 12 0.24 0.263 2.1 

LSTM 425 0.94 3620 3 24 0.21 0.191 1.9 

LSTM 426 0.94 3620 3 48 0.21 0.235 1.8 

LSTM 427 0.94 3620 3 96 0.26 0.192 2.5 

Linear 428 0.94 3620 6 1 0.40 0.015 2.8 

LSTM 429 0.94 3620 6 3 0.37 0.088 2.9 

LSTM 430 0.94 3620 6 6 0.34 0.044 2.6 

LSTM 431 0.94 3620 6 12 0.31 0.000 2.5 

LSTM 432 0.94 3620 6 24 0.30 0.044 2.3 

LSTM 433 0.94 3620 6 48 0.29 0.000 2.4 

LSTM 434 0.94 3620 6 96 0.40 0.104 2.7 

Linear 435 0.94 3620 12 1 0.63 0.000 3.9 

LSTM 436 0.94 3620 12 3 0.57 0.000 3.9 

LSTM 437 0.94 3620 12 6 0.52 0.015 3.6 

LSTM 438 0.94 3620 12 12 0.50 0.000 3.4 

LSTM 439 0.94 3620 12 24 0.42 0.000 3.1 

LSTM 440 0.94 3620 12 48 0.41 0.000 3.1 

LSTM 441 0.94 3620 12 96 0.59 0.000 3.9 

Linear 442 0.94 3620 24 1 0.77 0.000 4.8 

LSTM 443 0.94 3620 24 3 0.74 0.000 4.7 

LSTM 444 0.94 3620 24 6 0.58 0.000 4.2 
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LSTM 445 0.94 3620 24 12 0.49 0.000 3.9 

LSTM 446 0.94 3620 24 24 0.50 0.000 4.3 

LSTM 447 0.94 3620 24 48 0.43 0.000 3.6 

LSTM 448 0.94 3620 24 96 0.54 0.000 4.3 

Linear 449 0.94 5430 3 1 0.24 0.219 1.9 

LSTM 450 0.94 5430 3 3 0.24 0.161 2 

LSTM 451 0.94 5430 3 6 0.22 0.176 1.9 

LSTM 452 0.94 5430 3 12 0.22 0.322 2 

LSTM 453 0.94 5430 3 24 0.21 0.161 1.8 

LSTM 454 0.94 5430 3 48 0.22 0.162 2 

LSTM 455 0.94 5430 3 96 0.23 0.296 2 

Linear 456 0.94 5430 6 1 0.40 0.015 2.8 

LSTM 457 0.94 5430 6 3 0.37 0.029 2.8 

LSTM 458 0.94 5430 6 6 0.34 0.015 2.6 

LSTM 459 0.94 5430 6 12 0.30 0.102 2.5 

LSTM 460 0.94 5430 6 24 0.28 0.088 2.3 

LSTM 461 0.94 5430 6 48 0.32 0.353 2.8 

LSTM 462 0.94 5430 6 96 0.35 0.030 2.7 

Linear 463 0.94 5430 12 1 0.63 0.000 3.9 

LSTM 464 0.94 5430 12 3 0.56 0.015 3.7 

LSTM 465 0.94 5430 12 6 0.50 0.000 3.5 

LSTM 466 0.94 5430 12 12 0.41 0.000 3.1 

LSTM 467 0.94 5430 12 24 0.37 0.000 3.1 

LSTM 468 0.94 5430 12 48 0.39 0.000 3.2 

LSTM 469 0.94 5430 12 96 0.62 0.000 3.9 

Linear 470 0.94 5430 24 1 0.77 0.000 4.8 

LSTM 471 0.94 5430 24 3 0.73 0.000 4.7 

LSTM 472 0.94 5430 24 6 0.59 0.015 4.2 

LSTM 473 0.94 5430 24 12 0.51 0.000 4 

LSTM 474 0.94 5430 24 24 0.47 0.000 3.9 

LSTM 475 0.94 5430 24 48 0.58 0.000 4.3 

LSTM 476 0.94 5430 24 96 0.46 0.000 3.9 

Linear 477 0.94 7240 3 1 0.24 0.219 1.9 

LSTM 478 0.94 7240 3 3 0.23 0.146 1.9 

LSTM 479 0.94 7240 3 6 0.24 0.205 2.1 

LSTM 480 0.94 7240 3 12 0.21 0.234 1.9 

LSTM 481 0.94 7240 3 24 0.21 0.147 1.8 

LSTM 482 0.94 7240 3 48 0.21 0.250 1.8 

LSTM 483 0.94 7240 3 96 0.23 0.148 1.9 

Linear 484 0.94 7240 6 1 0.40 0.015 2.8 

LSTM 485 0.94 7240 6 3 0.37 0.044 2.7 

LSTM 486 0.94 7240 6 6 0.33 0.000 2.6 

LSTM 487 0.94 7240 6 12 0.34 0.029 2.6 

LSTM 488 0.94 7240 6 24 0.30 0.073 2.5 

LSTM 489 0.94 7240 6 48 0.30 0.044 2.6 



Carrow Morris-Wiltshire           MRes Dissertation 

  118 

 

LSTM 490 0.94 7240 6 96 0.30 0.030 2.5 

Linear 491 0.94 7240 12 1 0.63 0.000 3.9 

LSTM 492 0.94 7240 12 3 0.56 0.000 3.7 

LSTM 493 0.94 7240 12 6 0.50 0.015 3.7 

LSTM 494 0.94 7240 12 12 0.38 0.029 3.2 

LSTM 495 0.94 7240 12 24 0.43 0.000 3.3 

LSTM 496 0.94 7240 12 48 0.36 0.000 3.1 

LSTM 497 0.94 7240 12 96 0.56 0.000 3.9 

Linear 498 0.94 7240 24 1 0.77 0.000 4.8 

LSTM 499 0.94 7240 24 3 0.67 0.000 4.6 

LSTM 500 0.94 7240 24 6 0.55 0.000 4.1 

LSTM 501 0.94 7240 24 12 0.50 0.000 4 

LSTM 502 0.94 7240 24 24 0.47 0.000 4.1 

LSTM 503 0.94 7240 24 48 0.46 0.000 3.8 

LSTM 504 0.94 7240 24 96 0.70 0.000 4.9 

Linear 505 0.94 9050 3 1 0.24 0.219 1.9 

LSTM 506 0.94 9050 3 3 0.23 0.175 1.9 

LSTM 507 0.94 9050 3 6 0.23 0.176 1.9 

LSTM 508 0.94 9050 3 12 0.22 0.190 1.9 

LSTM 509 0.94 9050 3 24 0.23 0.132 2.1 

LSTM 510 0.94 9050 3 48 0.24 0.176 2 

LSTM 511 0.94 9050 3 96 0.23 0.488 2.2 

Linear 512 0.94 9050 6 1 0.40 0.015 2.8 

LSTM 513 0.94 9050 6 3 0.36 0.044 2.7 

LSTM 514 0.94 9050 6 6 0.32 0.000 2.6 

LSTM 515 0.94 9050 6 12 0.32 0.088 2.6 

LSTM 516 0.94 9050 6 24 0.32 0.059 2.5 

LSTM 517 0.94 9050 6 48 0.38 0.029 2.8 

LSTM 518 0.94 9050 6 96 0.31 0.030 2.5 

Linear 519 0.94 9050 12 1 0.63 0.000 3.9 

LSTM 520 0.94 9050 12 3 0.57 0.000 3.7 

LSTM 521 0.94 9050 12 6 0.50 0.029 3.5 

LSTM 522 0.94 9050 12 12 0.40 0.103 3.1 

LSTM 523 0.94 9050 12 24 0.41 0.000 3.3 

LSTM 524 0.94 9050 12 48 0.63 0.000 4.1 

LSTM 525 0.94 9050 12 96 0.41 0.000 3.2 

Linear 526 0.94 9050 24 1 0.77 0.000 4.8 

LSTM 527 0.94 9050 24 3 0.66 0.000 4.6 

LSTM 528 0.94 9050 24 6 0.59 0.000 4.1 

LSTM 529 0.94 9050 24 12 0.48 0.000 3.9 

LSTM 530 0.94 9050 24 24 0.78 0.000 4.7 

LSTM 531 0.94 9050 24 48 0.46 0.000 4 

LSTM 532 0.94 9050 24 96 0.71 0.000 4.8 
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9.2.2 Multivariate Anomaly Detection 

Model Model 
Number 

Completeness Sequence Horizon Window 
Size 

MAE Anomaly 
Percentage 

Anomaly 
Threshold 

Linear 1 1 216 1 1 0.53 0.000 2.6 

LSTM 2 1 216 1 3 0.76 0.000 5.8 

LSTM 3 1 216 1 6 1.04 0.000 8.2 

LSTM 4 1 216 1 12 0.78 0.000 3.8 

LSTM 5 1 216 1 24 0.59 0.000 3.5 

LSTM 6 1 216 1 48 0.55 0.103 5.4 

LSTM 7 1 216 1 96 0.62 0.000 4.8 

Linear 8 1 216 3 1 1.20 0.000 5.4 

LSTM 9 1 216 3 3 1.08 0.000 7.6 

LSTM 10 1 216 3 6 0.55 0.000 5.1 

LSTM 11 1 216 3 12 1.38 0.000 10.2 

LSTM 12 1 216 3 24 0.53 0.337 4 

LSTM 13 1 216 3 48 0.50 0.250 4 

LSTM 14 1 216 3 96 0.51 0.000 4.6 

Linear 15 1 216 6 1 2.48 0.000 10.9 

LSTM 16 1 216 6 3 1.27 0.000 9.8 

LSTM 17 1 216 6 6 0.91 0.000 6.7 

LSTM 18 1 216 6 12 1.45 0.000 10.2 

LSTM 19 1 216 6 24 0.86 0.103 5.8 

LSTM 20 1 216 6 48 0.83 0.000 7.1 

LSTM 21 1 216 6 96 1.36 0.000 10.9 

Linear 22 1 216 12 1 3.01 0.000 13 

LSTM 23 1 216 12 3 0.63 0.000 3.6 

LSTM 24 1 216 12 6 1.99 0.000 11.7 

LSTM 25 1 216 12 12 0.98 0.000 6 

LSTM 26 1 216 12 24 1.16 0.000 7.2 

LSTM 27 1 216 12 48 0.62 0.015 3.9 

LSTM 28 1 216 12 96 0.80 0.000 6 

Linear 29 1 216 24 1 1.34 0.000 6.4 

LSTM 30 1 216 24 3 1.26 0.000 8.2 

LSTM 31 1 216 24 6 1.06 0.000 6.1 

LSTM 32 1 216 24 12 0.99 0.000 5.7 

LSTM 33 1 216 24 24 0.74 0.000 4.8 

LSTM 34 1 216 24 48 0.48 0.000 3.5 

LSTM 35 1 216 24 96 0.47 0.000 4 

Linear 36 1 432 1 1 0.43 0.000 2 

LSTM 37 1 432 1 3 1.40 0.000 12.2 

LSTM 38 1 432 1 6 1.84 0.000 14 

LSTM 39 1 432 1 12 0.78 0.000 5.9 

LSTM 40 1 432 1 24 0.79 0.000 6.9 

LSTM 41 1 432 1 48 0.52 0.015 3.7 

LSTM 42 1 432 1 96 0.30 0.074 2.7 
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Linear 43 1 432 3 1 0.91 0.000 4.2 

LSTM 44 1 432 3 3 0.77 0.000 4.3 

LSTM 45 1 432 3 6 0.89 0.000 8.4 

LSTM 46 1 432 3 12 0.60 0.000 3.9 

LSTM 47 1 432 3 24 0.63 0.000 3.8 

LSTM 48 1 432 3 48 1.08 0.000 10 

LSTM 49 1 432 3 96 0.47 0.015 3.4 

Linear 50 1 432 6 1 2.15 0.000 9.5 

LSTM 51 1 432 6 3 0.87 0.000 5.8 

LSTM 52 1 432 6 6 1.54 0.000 10.2 

LSTM 53 1 432 6 12 1.10 0.000 8 

LSTM 54 1 432 6 24 0.82 0.015 6 

LSTM 55 1 432 6 48 0.69 0.000 3.8 

LSTM 56 1 432 6 96 0.69 0.000 6.4 

Linear 57 1 432 12 1 2.89 0.000 12.8 

LSTM 58 1 432 12 3 0.82 0.000 5.2 

LSTM 59 1 432 12 6 0.74 0.000 4.7 

LSTM 60 1 432 12 12 1.20 0.000 9.5 

LSTM 61 1 432 12 24 1.12 0.000 7.3 

LSTM 62 1 432 12 48 1.03 0.029 5.1 

LSTM 63 1 432 12 96 0.53 0.000 4.1 

Linear 64 1 432 24 1 1.94 0.000 8.7 

LSTM 65 1 432 24 3 1.26 0.000 8.8 

LSTM 66 1 432 24 6 0.93 0.073 6.4 

LSTM 67 1 432 24 12 0.88 0.015 5.5 

LSTM 68 1 432 24 24 0.99 0.000 5.3 

LSTM 69 1 432 24 48 0.54 0.000 3.6 

LSTM 70 1 432 24 96 0.65 0.000 4 

Linear 71 1 648 1 1 0.57 0.000 2.6 

LSTM 72 1 648 1 3 0.55 0.000 3.8 

LSTM 73 1 648 1 6 2.11 0.000 14.6 

LSTM 74 1 648 1 12 0.70 0.000 4.7 

LSTM 75 1 648 1 24 1.33 0.000 11.6 

LSTM 76 1 648 1 48 0.58 0.000 4.2 

LSTM 77 1 648 1 96 0.25 0.059 1.9 

Linear 78 1 648 3 1 1.16 0.000 5.4 

LSTM 79 1 648 3 3 0.90 0.000 7.4 

LSTM 80 1 648 3 6 1.84 0.000 12.6 

LSTM 81 1 648 3 12 0.86 0.000 6.3 

LSTM 82 1 648 3 24 0.87 0.000 4.7 

LSTM 83 1 648 3 48 0.48 0.000 2.8 

LSTM 84 1 648 3 96 0.37 0.458 3.5 

Linear 85 1 648 6 1 1.89 0.000 8.4 

LSTM 86 1 648 6 3 0.80 0.000 4.7 

LSTM 87 1 648 6 6 1.78 0.000 10.5 
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LSTM 88 1 648 6 12 1.02 0.015 5.6 

LSTM 89 1 648 6 24 1.04 0.000 5.9 

LSTM 90 1 648 6 48 0.77 0.000 5.8 

LSTM 91 1 648 6 96 0.71 0.030 5.6 

Linear 92 1 648 12 1 3.18 0.000 13.7 

LSTM 93 1 648 12 3 1.29 0.000 7.8 

LSTM 94 1 648 12 6 0.82 0.029 4.7 

LSTM 95 1 648 12 12 1.10 0.000 6.8 

LSTM 96 1 648 12 24 1.36 0.117 10.3 

LSTM 97 1 648 12 48 0.76 0.044 4.8 

LSTM 98 1 648 12 96 0.62 0.044 5 

Linear 99 1 648 24 1 1.96 0.000 8.7 

LSTM 100 1 648 24 3 2.05 0.000 15.4 

LSTM 101 1 648 24 6 1.26 0.000 12.4 

LSTM 102 1 648 24 12 1.66 0.000 14.6 

LSTM 103 1 648 24 24 1.01 0.029 5.7 

LSTM 104 1 648 24 48 0.77 0.516 6.9 

LSTM 105 1 648 24 96 0.96 0.015 6.2 

Linear 106 1 864 1 1 0.50 0.000 2.4 

LSTM 107 1 864 1 3 0.63 0.000 4.7 

LSTM 108 1 864 1 6 1.12 0.000 8.7 

LSTM 109 1 864 1 12 0.90 0.000 6 

LSTM 110 1 864 1 24 1.02 0.000 6.7 

LSTM 111 1 864 1 48 0.92 0.000 6.8 

LSTM 112 1 864 1 96 0.41 0.000 3.2 

Linear 113 1 864 3 1 0.97 0.000 4.2 

LSTM 114 1 864 3 3 1.55 0.000 11.3 

LSTM 115 1 864 3 6 1.08 0.000 6.4 

LSTM 116 1 864 3 12 0.77 0.000 5.9 

LSTM 117 1 864 3 24 0.52 0.000 4.1 

LSTM 118 1 864 3 48 0.72 0.000 6.3 

LSTM 119 1 864 3 96 0.50 0.030 3.9 

Linear 120 1 864 6 1 1.83 0.000 8.1 

LSTM 121 1 864 6 3 0.57 0.000 4.4 

LSTM 122 1 864 6 6 1.23 0.000 7 

LSTM 123 1 864 6 12 0.82 0.000 6 

LSTM 124 1 864 6 24 0.95 0.000 6.9 

LSTM 125 1 864 6 48 0.68 0.000 5 

LSTM 126 1 864 6 96 0.49 0.000 4 

Linear 127 1 864 12 1 3.11 0.000 13.5 

LSTM 128 1 864 12 3 0.69 0.000 4.7 

LSTM 129 1 864 12 6 1.10 0.000 9.3 

LSTM 130 1 864 12 12 0.80 0.000 5.3 

LSTM 131 1 864 12 24 0.90 0.147 6.3 

LSTM 132 1 864 12 48 0.67 0.221 4.6 
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LSTM 133 1 864 12 96 0.42 0.015 3.7 

Linear 134 1 864 24 1 2.03 0.000 9 

LSTM 135 1 864 24 3 0.85 0.000 6 

LSTM 136 1 864 24 6 0.84 0.000 5.5 

LSTM 137 1 864 24 12 0.98 0.000 5.8 

LSTM 138 1 864 24 24 1.30 0.000 12.5 

LSTM 139 1 864 24 48 0.59 0.000 3.9 

LSTM 140 1 864 24 96 0.42 0.000 3.4 

Linear 141 0.98 694 1 1 1.34 0.000 4.8 

LSTM 142 0.98 694 1 3 0.26 0.117 2 

LSTM 143 0.98 694 1 6 0.27 0.102 1.9 

LSTM 144 0.98 694 1 12 0.18 0.249 1.4 

LSTM 145 0.98 694 1 24 0.22 0.147 1.6 

LSTM 146 0.98 694 1 48 0.34 0.573 3 

LSTM 147 0.98 694 1 96 0.24 0.089 1.9 

Linear 148 0.98 694 3 1 2.20 0.000 7.8 

LSTM 149 0.98 694 3 3 0.39 0.058 2.9 

LSTM 150 0.98 694 3 6 0.27 0.132 2.1 

LSTM 151 0.98 694 3 12 0.28 0.117 2.2 

LSTM 152 0.98 694 3 24 0.30 0.088 2.2 

LSTM 153 0.98 694 3 48 0.28 0.118 2.2 

LSTM 154 0.98 694 3 96 0.29 0.118 2.5 

Linear 155 0.98 694 6 1 2.67 0.000 9.7 

LSTM 156 0.98 694 6 3 0.37 0.088 3.1 

LSTM 157 0.98 694 6 6 0.34 0.117 2.7 

LSTM 158 0.98 694 6 12 0.33 0.117 2.8 

LSTM 159 0.98 694 6 24 0.32 0.205 2.7 

LSTM 160 0.98 694 6 48 0.31 0.147 2.5 

LSTM 161 0.98 694 6 96 0.30 0.163 2.6 

Linear 162 0.98 694 12 1 2.97 0.000 10.7 

LSTM 163 0.98 694 12 3 0.39 0.220 3 

LSTM 164 0.98 694 12 6 0.39 0.015 3 

LSTM 165 0.98 694 12 12 0.33 0.029 2.8 

LSTM 166 0.98 694 12 24 0.38 0.044 2.9 

LSTM 167 0.98 694 12 48 0.39 0.103 3 

LSTM 168 0.98 694 12 96 0.36 0.237 3.1 

Linear 169 0.98 694 24 1 2.69 0.000 9.8 

LSTM 170 0.98 694 24 3 0.38 0.029 3.1 

LSTM 171 0.98 694 24 6 0.45 0.469 3.8 

LSTM 172 0.98 694 24 12 0.43 0.117 3.6 

LSTM 173 0.98 694 24 24 0.38 0.000 3 

LSTM 174 0.98 694 24 48 0.48 0.088 3.8 

LSTM 175 0.98 694 24 96 0.43 0.726 4.7 

Linear 176 0.98 1388 1 1 0.94 0.000 3.8 

LSTM 177 0.98 1388 1 3 0.26 0.278 2 
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LSTM 178 0.98 1388 1 6 0.27 0.102 2.2 

LSTM 179 0.98 1388 1 12 0.23 0.059 1.7 

LSTM 180 0.98 1388 1 24 0.27 0.088 2.2 

LSTM 181 0.98 1388 1 48 0.21 0.191 1.5 

LSTM 182 0.98 1388 1 96 0.26 0.103 1.9 

Linear 183 0.98 1388 3 1 1.90 0.000 6.7 

LSTM 184 0.98 1388 3 3 0.33 0.073 2.6 

LSTM 185 0.98 1388 3 6 0.34 0.117 2.8 

LSTM 186 0.98 1388 3 12 0.27 0.176 2.1 

LSTM 187 0.98 1388 3 24 0.31 0.205 2.3 

LSTM 188 0.98 1388 3 48 0.32 0.044 2.4 

LSTM 189 0.98 1388 3 96 0.27 0.207 2.4 

Linear 190 0.98 1388 6 1 2.58 0.000 9.1 

LSTM 191 0.98 1388 6 3 0.33 0.146 2.9 

LSTM 192 0.98 1388 6 6 0.34 0.102 2.6 

LSTM 193 0.98 1388 6 12 0.31 0.117 2.6 

LSTM 194 0.98 1388 6 24 0.33 0.088 2.4 

LSTM 195 0.98 1388 6 48 0.35 0.147 2.6 

LSTM 196 0.98 1388 6 96 0.29 0.192 2.4 

Linear 197 0.98 1388 12 1 3.08 0.000 11.1 

LSTM 198 0.98 1388 12 3 0.42 0.146 3.2 

LSTM 199 0.98 1388 12 6 0.43 0.190 3.3 

LSTM 200 0.98 1388 12 12 0.34 0.059 2.7 

LSTM 201 0.98 1388 12 24 0.39 0.088 3 

LSTM 202 0.98 1388 12 48 0.35 0.309 3.3 

LSTM 203 0.98 1388 12 96 0.36 0.118 3 

Linear 204 0.98 1388 24 1 2.56 0.000 9.3 

LSTM 205 0.98 1388 24 3 0.39 0.015 3 

LSTM 206 0.98 1388 24 6 0.37 0.000 3 

LSTM 207 0.98 1388 24 12 0.36 0.000 2.9 

LSTM 208 0.98 1388 24 24 0.44 0.000 3.2 

LSTM 209 0.98 1388 24 48 0.42 0.044 3.5 

LSTM 210 0.98 1388 24 96 0.36 0.000 2.8 

Linear 211 0.98 2082 1 1 0.92 0.000 3.5 

LSTM 212 0.98 2082 1 3 0.30 0.073 2.4 

LSTM 213 0.98 2082 1 6 0.25 0.117 2 

LSTM 214 0.98 2082 1 12 0.28 0.644 2.5 

LSTM 215 0.98 2082 1 24 0.27 0.000 2.1 

LSTM 216 0.98 2082 1 48 0.27 0.397 2.3 

LSTM 217 0.98 2082 1 96 0.27 0.089 2 

Linear 218 0.98 2082 3 1 2.22 0.000 7.8 

LSTM 219 0.98 2082 3 3 0.32 0.205 2.7 

LSTM 220 0.98 2082 3 6 0.30 0.293 2.7 

LSTM 221 0.98 2082 3 12 0.34 0.117 3 

LSTM 222 0.98 2082 3 24 0.26 0.191 2 
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LSTM 223 0.98 2082 3 48 0.28 0.132 2.2 

LSTM 224 0.98 2082 3 96 0.28 0.148 2.3 

Linear 225 0.98 2082 6 1 2.77 0.000 10.1 

LSTM 226 0.98 2082 6 3 0.31 0.146 2.5 

LSTM 227 0.98 2082 6 6 0.34 0.102 2.8 

LSTM 228 0.98 2082 6 12 0.33 0.161 2.6 

LSTM 229 0.98 2082 6 24 0.33 0.176 2.9 

LSTM 230 0.98 2082 6 48 0.35 0.074 2.8 

LSTM 231 0.98 2082 6 96 0.29 0.089 2.4 

Linear 232 0.98 2082 12 1 3.10 0.000 11.2 

LSTM 233 0.98 2082 12 3 0.37 0.146 3.1 

LSTM 234 0.98 2082 12 6 0.39 0.073 3 

LSTM 235 0.98 2082 12 12 0.40 0.073 3.3 

LSTM 236 0.98 2082 12 24 0.37 0.044 2.9 

LSTM 237 0.98 2082 12 48 0.38 0.147 3 

LSTM 238 0.98 2082 12 96 0.34 0.089 2.7 

Linear 239 0.98 2082 24 1 2.57 0.000 9.3 

LSTM 240 0.98 2082 24 3 0.42 0.000 3.2 

LSTM 241 0.98 2082 24 6 0.39 0.000 2.8 

LSTM 242 0.98 2082 24 12 0.48 0.000 4.7 

LSTM 243 0.98 2082 24 24 0.32 0.000 2.7 

LSTM 244 0.98 2082 24 48 0.37 0.000 3 

LSTM 245 0.98 2082 24 96 0.40 0.000 3.1 

Linear 246 0.98 2776 1 1 1.29 0.000 4.6 

LSTM 247 0.98 2776 1 3 0.31 0.044 2.3 

LSTM 248 0.98 2776 1 6 0.20 0.161 1.6 

LSTM 249 0.98 2776 1 12 0.30 0.059 2.2 

LSTM 250 0.98 2776 1 24 0.26 0.117 2 

LSTM 251 0.98 2776 1 48 0.28 0.088 2 

LSTM 252 0.98 2776 1 96 0.23 0.163 1.9 

Linear 253 0.98 2776 3 1 1.87 0.000 6.7 

LSTM 254 0.98 2776 3 3 0.28 0.146 2.4 

LSTM 255 0.98 2776 3 6 0.32 0.146 2.6 

LSTM 256 0.98 2776 3 12 0.32 0.117 2.5 

LSTM 257 0.98 2776 3 24 0.31 0.073 2.3 

LSTM 258 0.98 2776 3 48 0.30 0.044 2.3 

LSTM 259 0.98 2776 3 96 0.28 0.207 2.2 

Linear 260 0.98 2776 6 1 2.33 0.000 8.4 

LSTM 261 0.98 2776 6 3 0.32 0.161 2.7 

LSTM 262 0.98 2776 6 6 0.36 0.102 2.9 

LSTM 263 0.98 2776 6 12 0.31 0.176 2.6 

LSTM 264 0.98 2776 6 24 0.32 0.073 2.5 

LSTM 265 0.98 2776 6 48 0.38 0.000 3.1 

LSTM 266 0.98 2776 6 96 0.32 0.192 2.5 

Linear 267 0.98 2776 12 1 3.03 0.000 10.7 
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LSTM 268 0.98 2776 12 3 0.44 0.029 3.5 

LSTM 269 0.98 2776 12 6 0.45 0.059 3.2 

LSTM 270 0.98 2776 12 12 0.38 0.117 3.3 

LSTM 271 0.98 2776 12 24 0.38 0.000 2.8 

LSTM 272 0.98 2776 12 48 0.48 0.912 5.3 

LSTM 273 0.98 2776 12 96 0.34 0.207 3 

Linear 274 0.98 2776 24 1 2.54 0.000 9.2 

LSTM 275 0.98 2776 24 3 0.44 0.000 3.2 

LSTM 276 0.98 2776 24 6 0.42 0.000 3.3 

LSTM 277 0.98 2776 24 12 0.43 0.029 3.3 

LSTM 278 0.98 2776 24 24 0.36 0.000 2.8 

LSTM 279 0.98 2776 24 48 0.34 0.074 2.9 

LSTM 280 0.98 2776 24 96 0.34 0.000 2.9 

Linear 281 0.98 3470 1 1 1.19 0.000 4.5 

LSTM 282 0.98 3470 1 3 0.19 0.336 1.5 

LSTM 283 0.98 3470 1 6 0.31 0.058 2.3 

LSTM 284 0.98 3470 1 12 0.27 0.249 1.9 

LSTM 285 0.98 3470 1 24 0.27 0.073 1.8 

LSTM 286 0.98 3470 1 48 0.23 0.147 1.7 

LSTM 287 0.98 3470 1 96 0.24 0.103 1.9 

Linear 288 0.98 3470 3 1 2.31 0.000 8.5 

LSTM 289 0.98 3470 3 3 0.28 0.161 2.2 

LSTM 290 0.98 3470 3 6 0.30 0.161 2.3 

LSTM 291 0.98 3470 3 12 0.34 0.263 2.7 

LSTM 292 0.98 3470 3 24 0.26 0.191 2 

LSTM 293 0.98 3470 3 48 0.25 0.103 2 

LSTM 294 0.98 3470 3 96 0.25 0.148 2.2 

Linear 295 0.98 3470 6 1 2.24 0.000 8 

LSTM 296 0.98 3470 6 3 0.30 0.117 2.5 

LSTM 297 0.98 3470 6 6 0.35 0.102 3.1 

LSTM 298 0.98 3470 6 12 0.31 0.161 2.3 

LSTM 299 0.98 3470 6 24 0.34 0.088 2.8 

LSTM 300 0.98 3470 6 48 0.39 0.000 3.1 

LSTM 301 0.98 3470 6 96 0.30 0.177 2.4 

Linear 302 0.98 3470 12 1 2.97 0.000 10.5 

LSTM 303 0.98 3470 12 3 0.33 0.073 2.7 

LSTM 304 0.98 3470 12 6 0.43 0.102 3.2 

LSTM 305 0.98 3470 12 12 0.46 0.044 3.4 

LSTM 306 0.98 3470 12 24 0.36 0.000 2.9 

LSTM 307 0.98 3470 12 48 0.34 0.059 2.6 

LSTM 308 0.98 3470 12 96 0.31 0.089 2.7 

Linear 309 0.98 3470 24 1 2.39 0.000 8.8 

LSTM 310 0.98 3470 24 3 0.44 0.000 3.4 

LSTM 311 0.98 3470 24 6 0.40 0.000 3.3 

LSTM 312 0.98 3470 24 12 0.40 0.000 3.2 
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LSTM 313 0.98 3470 24 24 0.38 0.000 3.1 

LSTM 314 0.98 3470 24 48 0.36 0.029 3 

LSTM 315 0.98 3470 24 96 0.38 0.000 2.8 

Linear 316 0.96 1288 1 1 0.25 0.073 1.5 

LSTM 317 0.96 1288 1 3 0.21 0.132 1.5 

LSTM 318 0.96 1288 1 6 0.19 0.175 1.7 

LSTM 319 0.96 1288 1 12 0.24 0.015 2.4 

LSTM 320 0.96 1288 1 24 0.31 0.029 2.2 

LSTM 321 0.96 1288 1 48 0.18 0.132 1.5 

LSTM 322 0.96 1288 1 96 0.17 0.177 1.4 

Linear 323 0.96 1288 3 1 0.37 0.044 2.3 

LSTM 324 0.96 1288 3 3 0.24 0.117 2.1 

LSTM 325 0.96 1288 3 6 0.23 0.205 2 

LSTM 326 0.96 1288 3 12 0.23 0.146 2 

LSTM 327 0.96 1288 3 24 0.24 0.088 1.9 

LSTM 328 0.96 1288 3 48 0.35 0.015 2.7 

LSTM 329 0.96 1288 3 96 0.29 0.000 2.7 

Linear 330 0.96 1288 6 1 0.81 0.000 4 

LSTM 331 0.96 1288 6 3 0.29 0.044 2.5 

LSTM 332 0.96 1288 6 6 0.32 0.088 2.8 

LSTM 333 0.96 1288 6 12 0.34 0.015 3.1 

LSTM 334 0.96 1288 6 24 0.31 0.029 2.5 

LSTM 335 0.96 1288 6 48 0.28 0.015 2.3 

LSTM 336 0.96 1288 6 96 0.42 0.000 4.2 

Linear 337 0.96 1288 12 1 0.97 0.000 5 

LSTM 338 0.96 1288 12 3 0.36 0.000 3 

LSTM 339 0.96 1288 12 6 0.39 0.000 3.3 

LSTM 340 0.96 1288 12 12 0.36 0.000 3 

LSTM 341 0.96 1288 12 24 0.41 0.000 3.5 

LSTM 342 0.96 1288 12 48 0.33 0.000 2.7 

LSTM 343 0.96 1288 12 96 0.35 0.104 3.1 

Linear 344 0.96 1288 24 1 1.48 0.000 7.2 

LSTM 345 0.96 1288 24 3 0.38 0.000 3.1 

LSTM 346 0.96 1288 24 6 0.41 0.000 3.4 

LSTM 347 0.96 1288 24 12 0.53 0.000 4.4 

LSTM 348 0.96 1288 24 24 0.44 0.000 3.7 

LSTM 349 0.96 1288 24 48 0.41 0.000 3.2 

LSTM 350 0.96 1288 24 96 0.38 0.000 3.1 

Linear 351 0.96 2576 1 1 0.38 0.029 2 

LSTM 352 0.96 2576 1 3 0.18 0.219 1.5 

LSTM 353 0.96 2576 1 6 0.20 0.102 1.7 

LSTM 354 0.96 2576 1 12 0.25 0.498 2.5 

LSTM 355 0.96 2576 1 24 0.22 0.059 1.6 

LSTM 356 0.96 2576 1 48 0.19 0.088 1.6 

LSTM 357 0.96 2576 1 96 0.23 0.015 2.1 
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Linear 358 0.96 2576 3 1 0.52 0.015 2.7 

LSTM 359 0.96 2576 3 3 0.41 0.000 4 

LSTM 360 0.96 2576 3 6 0.25 0.073 2.1 

LSTM 361 0.96 2576 3 12 0.24 0.088 2 

LSTM 362 0.96 2576 3 24 0.30 0.088 2.7 

LSTM 363 0.96 2576 3 48 0.35 0.000 3.2 

LSTM 364 0.96 2576 3 96 0.23 0.118 2 

Linear 365 0.96 2576 6 1 0.36 0.000 2.4 

LSTM 366 0.96 2576 6 3 0.31 0.029 2.5 

LSTM 367 0.96 2576 6 6 0.32 0.102 2.9 

LSTM 368 0.96 2576 6 12 0.32 0.029 2.6 

LSTM 369 0.96 2576 6 24 0.32 0.059 2.5 

LSTM 370 0.96 2576 6 48 0.28 0.088 2.5 

LSTM 371 0.96 2576 6 96 0.33 0.030 2.6 

Linear 372 0.96 2576 12 1 1.31 0.000 6.2 

LSTM 373 0.96 2576 12 3 0.42 0.015 3.9 

LSTM 374 0.96 2576 12 6 0.40 0.000 3.2 

LSTM 375 0.96 2576 12 12 0.38 0.000 3.2 

LSTM 376 0.96 2576 12 24 0.43 0.000 3.6 

LSTM 377 0.96 2576 12 48 0.39 0.015 3.1 

LSTM 378 0.96 2576 12 96 0.47 0.000 3.8 

Linear 379 0.96 2576 24 1 1.14 0.000 5.8 

LSTM 380 0.96 2576 24 3 0.43 0.000 3.6 

LSTM 381 0.96 2576 24 6 0.43 0.000 3.2 

LSTM 382 0.96 2576 24 12 0.42 0.000 3.5 

LSTM 383 0.96 2576 24 24 0.42 0.000 3.5 

LSTM 384 0.96 2576 24 48 0.40 0.000 3.2 

LSTM 385 0.96 2576 24 96 0.41 0.000 3.2 

Linear 386 0.96 3864 1 1 0.18 0.161 1.2 

LSTM 387 0.96 3864 1 3 0.16 0.161 1.3 

LSTM 388 0.96 3864 1 6 0.18 0.175 1.4 

LSTM 389 0.96 3864 1 12 0.23 0.059 1.7 

LSTM 390 0.96 3864 1 24 0.19 0.161 1.4 

LSTM 391 0.96 3864 1 48 0.18 0.353 1.6 

LSTM 392 0.96 3864 1 96 0.18 0.118 1.5 

Linear 393 0.96 3864 3 1 0.23 0.146 1.8 

LSTM 394 0.96 3864 3 3 0.28 0.088 2.1 

LSTM 395 0.96 3864 3 6 0.23 0.161 2 

LSTM 396 0.96 3864 3 12 0.22 0.161 1.9 

LSTM 397 0.96 3864 3 24 0.28 0.191 2.2 

LSTM 398 0.96 3864 3 48 0.24 0.088 2 

LSTM 399 0.96 3864 3 96 0.23 0.192 1.8 

Linear 400 0.96 3864 6 1 0.37 0.000 2.4 

LSTM 401 0.96 3864 6 3 0.56 0.000 4.6 

LSTM 402 0.96 3864 6 6 0.34 0.029 3 
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LSTM 403 0.96 3864 6 12 0.39 0.000 3.7 

LSTM 404 0.96 3864 6 24 0.27 0.176 2.3 

LSTM 405 0.96 3864 6 48 0.33 0.074 3.1 

LSTM 406 0.96 3864 6 96 0.28 0.030 2.3 

Linear 407 0.96 3864 12 1 0.97 0.000 5.1 

LSTM 408 0.96 3864 12 3 0.44 0.059 4.1 

LSTM 409 0.96 3864 12 6 0.42 0.000 3.1 

LSTM 410 0.96 3864 12 12 0.40 0.000 3.6 

LSTM 411 0.96 3864 12 24 0.41 0.000 2.9 

LSTM 412 0.96 3864 12 48 0.49 0.000 4.1 

LSTM 413 0.96 3864 12 96 0.45 0.592 5 

Linear 414 0.96 3864 24 1 0.86 0.000 4.7 

LSTM 415 0.96 3864 24 3 0.47 0.000 3.5 

LSTM 416 0.96 3864 24 6 0.42 0.000 3.7 

LSTM 417 0.96 3864 24 12 0.46 0.000 4 

LSTM 418 0.96 3864 24 24 0.40 0.000 3.3 

LSTM 419 0.96 3864 24 48 0.45 0.000 3.8 

LSTM 420 0.96 3864 24 96 0.44 0.000 3.8 

Linear 421 0.96 5152 1 1 0.60 0.015 2.9 

LSTM 422 0.96 5152 1 3 0.24 0.015 2.2 

LSTM 423 0.96 5152 1 6 0.17 0.132 1.3 

LSTM 424 0.96 5152 1 12 0.20 0.205 1.7 

LSTM 425 0.96 5152 1 24 0.15 0.161 1.2 

LSTM 426 0.96 5152 1 48 0.19 0.176 1.5 

LSTM 427 0.96 5152 1 96 0.23 0.000 2.1 

Linear 428 0.96 5152 3 1 0.65 0.000 3.3 

LSTM 429 0.96 5152 3 3 0.22 0.102 1.8 

LSTM 430 0.96 5152 3 6 0.24 0.088 1.9 

LSTM 431 0.96 5152 3 12 0.26 0.044 2.3 

LSTM 432 0.96 5152 3 24 0.27 0.103 2 

LSTM 433 0.96 5152 3 48 0.32 0.073 2.6 

LSTM 434 0.96 5152 3 96 0.24 0.089 1.9 

Linear 435 0.96 5152 6 1 0.42 0.000 2.8 

LSTM 436 0.96 5152 6 3 0.38 0.000 3.6 

LSTM 437 0.96 5152 6 6 0.35 0.132 2.9 

LSTM 438 0.96 5152 6 12 0.35 0.073 3 

LSTM 439 0.96 5152 6 24 0.34 0.015 2.8 

LSTM 440 0.96 5152 6 48 0.26 0.088 2.2 

LSTM 441 0.96 5152 6 96 0.30 0.104 2.5 

Linear 442 0.96 5152 12 1 1.15 0.000 5.6 

LSTM 443 0.96 5152 12 3 0.39 0.000 3.3 

LSTM 444 0.96 5152 12 6 0.40 0.000 3.7 

LSTM 445 0.96 5152 12 12 0.41 0.000 3.5 

LSTM 446 0.96 5152 12 24 0.43 0.000 3.6 

LSTM 447 0.96 5152 12 48 0.50 0.000 3.2 
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LSTM 448 0.96 5152 12 96 0.32 0.000 2.7 

Linear 449 0.96 5152 24 1 0.81 0.000 4.6 

LSTM 450 0.96 5152 24 3 0.43 0.000 3.5 

LSTM 451 0.96 5152 24 6 0.41 0.000 3.4 

LSTM 452 0.96 5152 24 12 0.44 0.015 3.1 

LSTM 453 0.96 5152 24 24 0.42 0.000 3.6 

LSTM 454 0.96 5152 24 48 0.43 0.000 3.5 

LSTM 455 0.96 5152 24 96 0.46 0.000 3.8 

Linear 456 0.96 6440 1 1 0.39 0.058 2 

LSTM 457 0.96 6440 1 3 0.17 0.117 1.4 

LSTM 458 0.96 6440 1 6 0.18 0.278 1.4 

LSTM 459 0.96 6440 1 12 0.24 0.029 1.9 

LSTM 460 0.96 6440 1 24 0.17 0.176 1.5 

LSTM 461 0.96 6440 1 48 0.18 0.206 1.6 

LSTM 462 0.96 6440 1 96 0.19 0.118 1.6 

Linear 463 0.96 6440 3 1 0.89 0.000 4.3 

LSTM 464 0.96 6440 3 3 0.23 0.132 1.8 

LSTM 465 0.96 6440 3 6 0.23 0.132 2 

LSTM 466 0.96 6440 3 12 0.29 0.146 2.5 

LSTM 467 0.96 6440 3 24 0.25 0.117 1.9 

LSTM 468 0.96 6440 3 48 0.24 0.059 1.9 

LSTM 469 0.96 6440 3 96 0.27 0.074 2.2 

Linear 470 0.96 6440 6 1 0.51 0.000 3 

LSTM 471 0.96 6440 6 3 0.34 0.073 3.2 

LSTM 472 0.96 6440 6 6 0.33 0.117 3.1 

LSTM 473 0.96 6440 6 12 0.35 0.000 2.8 

LSTM 474 0.96 6440 6 24 0.28 0.073 2.4 

LSTM 475 0.96 6440 6 48 0.32 0.044 2.6 

LSTM 476 0.96 6440 6 96 0.30 0.059 2.7 

Linear 477 0.96 6440 12 1 1.35 0.000 6.4 

LSTM 478 0.96 6440 12 3 0.39 0.000 3.3 

LSTM 479 0.96 6440 12 6 0.34 0.000 2.9 

LSTM 480 0.96 6440 12 12 0.38 0.015 3.3 

LSTM 481 0.96 6440 12 24 0.45 0.000 3.6 

LSTM 482 0.96 6440 12 48 0.40 0.000 3.4 

LSTM 483 0.96 6440 12 96 0.36 0.015 3.2 

Linear 484 0.96 6440 24 1 0.94 0.000 5 

LSTM 485 0.96 6440 24 3 0.61 0.000 6.1 

LSTM 486 0.96 6440 24 6 0.47 0.000 4.1 

LSTM 487 0.96 6440 24 12 0.45 0.000 3.8 

LSTM 488 0.96 6440 24 24 0.44 0.000 3.9 

LSTM 489 0.96 6440 24 48 0.43 0.000 3.4 

LSTM 490 0.96 6440 24 96 0.40 0.000 3.4 

Linear 491 0.94 1810 1 1 0.82 0.000 4.3 

LSTM 492 0.94 1810 1 3 0.22 0.073 1.6 
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LSTM 493 0.94 1810 1 6 0.19 0.073 1.7 

LSTM 494 0.94 1810 1 12 0.23 0.102 1.5 

LSTM 495 0.94 1810 1 24 0.17 0.147 1.4 

LSTM 496 0.94 1810 1 48 0.25 0.015 2.1 

LSTM 497 0.94 1810 1 96 0.19 0.148 1.5 

Linear 498 0.94 1810 3 1 0.22 0.249 1.6 

LSTM 499 0.94 1810 3 3 0.34 0.015 2.6 

LSTM 500 0.94 1810 3 6 0.23 0.088 1.9 

LSTM 501 0.94 1810 3 12 0.25 0.073 2.1 

LSTM 502 0.94 1810 3 24 0.32 0.015 2.7 

LSTM 503 0.94 1810 3 48 0.30 0.059 2.6 

LSTM 504 0.94 1810 3 96 0.29 0.059 2.6 

Linear 505 0.94 1810 6 1 0.31 0.073 2.1 

LSTM 506 0.94 1810 6 3 0.27 0.044 2.2 

LSTM 507 0.94 1810 6 6 0.29 0.000 2.5 

LSTM 508 0.94 1810 6 12 0.31 0.029 2.3 

LSTM 509 0.94 1810 6 24 0.41 0.147 4.3 

LSTM 510 0.94 1810 6 48 0.39 0.088 3.4 

LSTM 511 0.94 1810 6 96 0.29 0.089 2.4 

Linear 512 0.94 1810 12 1 0.36 0.000 2.4 

LSTM 513 0.94 1810 12 3 0.54 0.029 3.9 

LSTM 514 0.94 1810 12 6 0.36 0.073 3.3 

LSTM 515 0.94 1810 12 12 0.36 0.000 2.9 

LSTM 516 0.94 1810 12 24 0.40 0.015 3.3 

LSTM 517 0.94 1810 12 48 0.33 0.000 2.8 

LSTM 518 0.94 1810 12 96 0.34 0.030 3 

Linear 519 0.94 1810 24 1 0.74 0.000 4 

LSTM 520 0.94 1810 24 3 0.42 0.000 3.5 

LSTM 521 0.94 1810 24 6 0.40 0.000 3 

LSTM 522 0.94 1810 24 12 0.41 0.000 3.6 

LSTM 523 0.94 1810 24 24 0.40 0.000 3.3 

LSTM 524 0.94 1810 24 48 0.38 0.000 3.2 

LSTM 525 0.94 1810 24 96 0.44 0.000 3.5 

Linear 526 0.94 3620 1 1 0.47 0.000 2.4 

LSTM 527 0.94 3620 1 3 0.23 0.102 1.6 

LSTM 528 0.94 3620 1 6 0.19 0.132 1.4 

LSTM 529 0.94 3620 1 12 0.30 0.000 2 

LSTM 530 0.94 3620 1 24 0.17 0.103 1.4 

LSTM 531 0.94 3620 1 48 0.19 0.132 1.5 

LSTM 532 0.94 3620 1 96 0.19 0.488 1.9 

 

 


